‘Design Professional in Responsible Charge

SDI Practice Announcement – New 32 Storey Hotel in China

2013-04-02:  Sustainable Design International Ltd. (SDI) is pleased to announce that its Managing Director, C.J. Walsh, has been invited to be ‘Project Design Architect’ / ‘Design Professional in Responsible Charge’ for a New 32 Storey Hotel in Yunnan Province, People’s Republic of China (PRC).

He will have responsibility for the Project’s Architectural Concept Design and General Schematic Design … including the overall architectural character and profile of primary exterior surfaces.

Project Approximate Value = € 65 Million (Euros) … excluding interior design, finishes and furnishing (which could end up doubling, or even tripling, the overall project value).

Sustainable Design International Ltd.  maintains a strict practice policy of Client Confidentiality.

[ If this Type of Professional Design Service Appeals to You, or Your Organization – Contact Us Immediately ! ]

.

.

2012 ‘Understanding China’ Policy Briefing Friends of Europe & EuroChambres

An estimated One Billion People will be living in China’s cities by 2030.  This large-scale and very rapid urbanization demands that a sustainable transformation of their urban built, social, economic and institutional environments commences Today – not at some notional point in a far distant future.

Furthermore … replicating a European approach to sustainable design and construction in other regions of the world is doomed to failure.  Urban Transformation in China must be adapted to Local Geography, Climate, Climate Change, Social Needs, Cultures, Economy, and Local Severe Events (e.g. earthquakes, flooding).  With European support and collaboration … China must, and will, find its own way.

Greening China's Cities of Tomorrow (2012) - Report CoverGreening China’s Cities of Tomorrow (Spring 2012)

Click the Link Above to read and/or download a PDF File (4.42 Mb)

Report on a One-Day China Advisory Council Roundtable, co-organized by Friends of Europe and EuroChambres, which was held in Brussels on 8 March 2012.  This event was part of an ‘Understanding China’ Programme (mid-2009 to mid-2012), co-funded by the European Commission.

.

.

2013 Asian Development Bank (ADB) Guidebook: ‘Increasing Climate Change Resilience of Urban Water Infrastructure’ 

This Guide describes a practical approach to bridge the gap between theoretical analyses of climate change impacts and the planning decisions that need to be made by city authorities and utility managers to increase climate change resilience of the water sector in the city of  Wuhan, Hubei Province, People’s Republic of China (PRC).  It focuses on answering the questions currently being asked by city planners and managers all over the world, as follows:

  • What changes might be caused by climate change ?
  • How will these changes affect services and utilities ?
  • What can we do now to prepare for them ?

The long lead time required to plan, finance, build, and commission city infrastructure facilities means that decision makers cannot wait for more detailed data on the effects of future climate change, especially those relating to local circumstances, but must make investment decisions based on what is known now and what can be readily predicted.  An important principle in this kind of ‘robust’ decision-making is provided by the  Intergovernmental Panel on Climate Change (IPCC)  tenet that adaptation investments, which move a city’s infrastructure toward sustainable development (such as providing safe drinking water and better sanitary conditions), are justifiable even without climate change.

This Guide is arranged in clear steps to provide direction and information for similar exercises in other areas.  Having grown out of a specific locality and its needs, the principles and solutions developed in this guide are founded on real world situations and problems …

ADB Guidebook: 'Increasing Climate Change Resilience of Urban Water Infrastructure' (2013) - Cover PageIncreasing Climate Change Resilience of Urban Water Infrastructure (ADB, 2013)

Click the Link Above to read and/or download a PDF File (2.31 Mb)

.

.

***  THIS TALL BUILDING IN YUNNAN PROVINCE  &  SIMILAR COMPLEX ARCHITECTURAL PROJECTS  ***

Working within the professional constraints of ‘client confidentiality’ … it is possible to have a general discussion about current building design, construction and operation issues in an international sector which is operating, more and more, beyond national borders … without adequate, or very often any, national and local regulation.  By ‘regulation’, I mean a flexible system of building-related legislation which is operated in conjunction with mandatory and effective technical control.

In order to cope with today’s complex built environment and the enormous variation in the size and scale of construction projects … a ‘flexible’ mix of functional, performance and prescriptive legal requirements is the sharpest and most appropriate instrument.

And you can forget the hype about performance-based building codes coming out of the USA … hot air, and much ado about little !

Of course, the biggest issue of all is the competence of those individuals who work in Authorities Having Jurisdiction (AHJ’s), i.e. technical controllers.  Even in the most developed economies of the world … there are many occasions when the level of individual incompetence in an AHJ is astounding … and institutional arrangements within the AHJ itself are a mess, i.e. the AHJ is not fit for purpose.

.

1.  Sustainable Design – Design Process Efficiency & Proper Preparation for Construction

A tremendous amount of waste is associated with and generated by the processes of conventional building design, construction and operation.  There is a more up-to-date and efficient way of doing things … an essential way for Sustainable Design … and it’s called Building Information Modelling (BIM) !

Furthermore … consider, for a moment, just the initial list of Specialist Consultants who will be engaged directly by the Chinese Client when the project’s conceptual design has reached a sufficiently developed stage.  How can all of these individuals and organizations – listed in the revised and agreed Project Design Agreement – obtain accurate and reliable ‘real time’ information about the rapidly evolving project from a central design library / information database … then feed their new work back into the centre without unnecessary delay ?   How, next, can everyone else who needs to know, be updated with the new design input … again, without delay ?   And perhaps, these consultants may also be based in different countries … working in very different time zones …

  • Building Information Modelling (BIM) Consultant
  • Local Design Institute (LDI) … a local architectural practice which will produce the project’s working drawings, handle local spatial planning and building code approvals, carry out site inspections, and deal directly with construction organization(s), etc., etc.
  • Interior Design Consultant
  • Traffic / Parking Analysis Consultant
  • Curtain Wall Consultant (Curtain Wall, Skylights & Special Roof Structures)
  • Retail Market Analysis Consultant
  • Landscape Design Consultant
  • Quantity Surveying & Cost Estimating Consultant
  • Furniture Design Consultant
  • Geotechnical, Civil Engineering & Structural Engineering Consultant (including structural performance under fire and earthquake conditions, resistance to fire-induced progressive damage and disproportionate damage … and also including climate resilience)
  • Acoustic & Audio-Visual Design Consultant
  • Mechanical, Electrical & Plumbing (MEP) Engineering Consultant
  • Integrated Building Automation & Management / Telecom / Security / Networking Consultant
  • Fire & Life-Safety Engineering Consultant
  • Water Feature Consultant
  • Wind Tunnel Test Consultant
  • Kitchen Equipment and Layout Design Consultant
  • Art, Artefact and Accessories Consultant & Procurement Services for Art, Artefacts, and Accessories
  • Tenant Storefront Design Consultant
  • Helicopter Landing Pad Design Consultant
  • Universal Design / Accessibility for All Consultant [including access to the building, electronic, information and communication technologies (EICT’s), and services offered at the hotel … and including fire safety, protection and evacuation for all]

.

2.  The ‘Design Professional in Responsible Charge’ !

The Project Design Agreement requests that the Client receive advice on who might be the different Specialist Consultants listed above.  In addition, it will be necessary to demarcate the boundaries within which each Consultant will operate … and, where appropriate, to prescribe a design performance target (see below) for each speciality … which must be ‘realized’ in the completed and occupied building !

Recalling the many previous posts, here on this Technical Blog, concerning NIST’s 2005 & 2008 Recommendations on the 9-11 World Trade Centre Building Collapses in New York City‘somebody’ must ensure that the many individuals and organizations listed above – members of the Larger (2nd Stage) Design Team – use consistent design data and assumptions … must co-ordinate design documents and specifications to identify overlaps and eliminate gaps … must serve as ultimate liaison between the Client, the Local Design Institute, AHJ officials, and the Construction Organization(s) … and must ensure that everybody is on the same communication wavelength, and working towards the same objective in a trans-disciplinary manner.

That ‘Somebody’ … the Design Professional in Responsible Charge … must be the Project Design Architect !

.

3.  Some Sustainable Design Performance Targets

Actual construction and building user performance shall be carefully (i.e. reliably and precisely) monitored … and independently verified …

A.   Basic Functional Requirements … the Building shall comply with the Basic Requirements for Construction Works – elaborated in Annex I of European Union (EU) Regulation No.305/2011 of the European Parliament and of the Council, of 9 March 2011, laying down Harmonized Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC.

See my Post, dated 2011-09-13 … https://www.cjwalsh.ie/2011/09/new-eu-construction-product-regulation-3052011-halleluiah/

.

B.   Good Indoor Air Quality (IAQ) … Two high-level performance indicators have been developed with the aim of protecting Human Health, and are both now referenced in International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’

      –   Radon Activity (incl. Rn-222, Rn-220, RnD) in a building should, on average, fall within the range of 10 Bq/m3 to 40 Bq/m3, but shall at no time exceed 60 Bq/m3 ;

      –   Carbon Dioxide (CO2) Concentrations in a building should not significantly exceed average external levels – typically within the range of 300 parts per million (ppm) to 500 ppm – and shall at no time exceed 800 ppm.

.

C.   Energy Conservation & Efficiency + A ‘Positive Energy’ Return + Assured Building User Thermal Comfort

See my Post, dated 2013-09-10 … https://www.cjwalsh.ie/2013/09/passivhaus-standard-is-not-enough-in-new-building-projects/

.

D.   Project-Specific Sustainable Fire Engineering Design Objectives

See my Post, dated 2014-04-20 … https://www.cjwalsh.ie/2014/04/sustainable-fire-engineering-design-targeting-mrv/

.

E.

.

.

.

.

ENDEnhanced by Zemanta

‘Sustainable Fire Engineering for All’ – SDI’s Professional Service

2012-12-14 & 2012-12-30:  Further to this distressing incident … which exposed a profound lack of awareness, care and competence within the general fire safety industrial sector …

Recent Fatal Fire at a Disabled Workshop in SW Germany

… this is how we would like to help you … whether you are an individual, or an organization … whether you are located in Ireland, Italy or Turkey … some other part of Europe, the Arab Gulf Region, India, Japan, China … or wherever !

And … we can, if requested or necessary, work in collaboration with local partners in those different geographical regions.

– FireOx International is the Fire Engineering Division of Sustainable Design International Ltd. (SDI) –

.

Colour photograph showing the 2 World Trade Center Towers, in New York City, immediately after the second plane impact. The mechanical damage arising from such a plane impact had been considered in the Initial Building Design Process; incredibly, any type of Fire Incident had not ! In the case of both towers and within a short period of time, Fire-Induced Progressive Damage resulted in Disproportionate Damage, and eventual Total Building Collapse. The horror and carnage at the World Trade Center Complex, and the extensive collateral damage to everywhere south of Canal Street, caused enormous long-term damage to the economy of Manhattan ... and had a very significant adverse impact on Global Financial Markets. Click to enlarge.
Colour photograph showing the 2 World Trade Center Towers, in New York City, immediately after the second plane impact. The mechanical damage arising from such a plane impact had been considered in the Initial Building Design Process; incredibly, any type of Fire Incident had not ! In the case of both towers and within a short period of time, Fire-Induced Progressive Damage resulted in Disproportionate Damage, and eventual Total Building Collapse. The horror and carnage at the World Trade Center Complex also caused enormous long-term damage to the economy of Manhattan … and had a very significant adverse impact on Global Financial Markets. Click to enlarge.

.

Introduction

Fundamentally, the 9-11 World Trade Center Incident in New York (2001) was an Extreme ‘Real’ Fire Event.  It presented the International Fire Engineering Community with a catastrophic failure in conventional practices and procedures related to:

  • Fire Engineering, Structural Engineering, and Architectural Design ;
  • Human Building Management Systems ;
  • Emergency Response by Firefighters, Rescue Teams, and Medical Personnel ;
  • National and Local Organizations Having Authority or Jurisdiction (AHJ’s) ;

… and with the serious problem of entirely inadequate Fire Safety Objectives in the building legislation, model codes and design standards of the most economically advanced countries in the world.

Those people who understand the building design process, and have experience as construction practitioners, have long realised that the lessons from 9-11 must be applied across the full spectrum of building types … not just to tall buildings.  Right up to the present day, unfortunately, many people in the International Fire Engineering Community are either unwilling, or unable, to do this.

Furthermore … Fire Engineering, Architectural Design and Structural Engineering must, of urgent necessity, be seamlessly conjoined … with the aim of removing misunderstandings and the wide gaps in client service delivery between the different disciplines.

In 2002, a series of Long-Term 9-11 Survivor Health Studies commenced in the USA … and in 2005 and 2008, the U.S. National Institute of Standards and Technology (NIST) issued a series of Post 9-11 Critical Recommendations concerning the design, construction, management and operation of buildings.

At FireOx International … we have fully integrated this essential design guidance into our frontline fire engineering and architectural practice … we have developed unique and practical solutions for worldwide application, some of which appear in International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’, published in December 2011.

.

Colour photograph showing an armed assailant during the November 2008 'Hive-Attack' on Mumbai ... an extraordinarily violent, co-ordinated assault on the largest (and wealthiest) city in India, which involved the strategic targeting of built environment Places of Public Resort, Iconic Buildings, High-Rise Buildings, Buildings having a Critical Function, Transport Infrastructure and Service Utilities ... with the aim of causing widespread terror among the general population, including tourists, and disruption to the city’s important economic environment. Click to enlarge.
Colour photograph showing an armed assailant during the November 2008 ‘Hive-Attack’ on Mumbai … an extraordinarily violent, co-ordinated assault on the largest (and wealthiest) city in India, which involved the strategic targeting of built environment Places of Public Resort, Iconic Buildings, High-Rise Buildings, Buildings having a Critical Function, Transport Infrastructure and Service Utilities … with the aim of causing widespread terror among the general population, including tourists, and disruption to the city’s important economic environment. Click to enlarge.

.

FireOx International’s Commitment to You

As a necessary response to the New 21st Century Paradigm of Real Extreme Event in a Built Environment which is becoming more and more complex … is subject to climate change and severe weather events … and is vulnerable to malign and malevolent disruption –

WE are committed to … the implementation of a Sustainable Human Environment which is Fire Safe and Secure for All, meaning that an ‘appropriate project-specific fire safety level’ is our fire engineering objective, with ‘human health protection’ targeted as a priority … through the use of innovative, reliability-based and person-centred sustainable design practices and procedures.

.

What is an ‘Appropriate Fire Safety Level’ in Your Building or Facility ?

It is rarely, if ever, explained to clients/client organizations that the Minimal Fire Safety Objectives in building legislation are focused solely on protecting the ‘interests’ of society, not those of the individual …  are, quite often, inadequate and/or flawed … and are, always, revised only after the latest tragedy !

To properly protect Your Interests as a client/client organization … we strongly advise that the Appropriate Level of Fire Safety in Your Building or Facility should exceed the minimal level of safety required by building legislation.  We would also caution that, in many jurisdictions (e.g. India), compliance with national building legislation is voluntary.

Which raises the issues of whether or not you will actually get what you pay for, and whether or not the Fire Protection Measures in Your Building or Facility are reliable (in other words, will they perform as intended at the time of a ‘real’ fire, which may occur at any time in a building’s long life cycle) !?!   Competent Technical Control of Design and Construction, independent of the design and construction organization(s), is essential.

You should carefully consider the following spectrum of issues which may be directly relevant to Your Project.  Following a process of consultation with you, we then develop Project-Specific Fire Engineering Design Objectives … bearing in mind that you must also comply with safety at work, anti-discrimination, and environmental legislation, etc … maintain business continuity, etc … be energy efficient, etc … and be socially responsible, etc …

–     Protection of the Health of All Building Users … including People with Activity Limitations (2001 WHO ICF), Visitors to the building or facility who may be unfamiliar with its layout, and Contractors or Product/Service Suppliers temporarily engaged in work or business transactions on site ;

–     Protection of Property from Loss or Damage … including the Building or Facility, its Contents, and Adjoining or Adjacent Properties ;

–     Safety of Firefighters, Rescue Teams and Other Emergency Response Personnel ;

–     Ease and Reasonable Cost of ‘Effective’ Reconstruction, Refurbishment or Repair Works after a Fire ;

–     Sustainability of the Human Environment (social – built – virtual – economic) … including Fitness for Intended Use and Life Cycle Costing of fire engineering related products and systems, etc … fixed, installed or otherwise incorporated in the building or facility ;

–     Protection of the Natural Environment from Harm, i.e. Adverse or Damaging Impacts.

.

FireOx International – Our Fire Engineering Services

  • WE  will advise you on Fire Safety Policy, Fire Safety Strategy Development, Fire Safety Implementation … and, whether you are within or from outside the European Union, on CE Marking of Fire Protection Related Construction Products

  • WE  understand the process of Design, particularly the new language of Sustainable Design … and we will produce Creative Fire Engineering Solutions for Your Project

  • WE  are thoroughly familiar with the intricacies of Building Sites … and we will verify and/or validate Design Compliance during construction, and at project completion … and, if requested or necessary, as a completely Independent Technical Controller ; 

  • WE  communicate easily and effectively with other Professional Design Disciplines, including architects and structural engineers … and we will act as fully participating members of Your Project Design & Construction Team … and, if requested or necessary, as the Design Professional in Responsible Charge **

  • WE  practice in accordance with a comprehensive Professional Code of Ethics

.

Sustainable Fire Engineering Solutions ?

  1. Are adapted to Local Geography, Climate/Climate Change, Social Need, Culture, Economy … and Severe Events (e.g. earthquakes, flooding) ;
  2. Are ‘Reliability-Based’, i.e. that design process based on practical experience, competence and an examination of real extreme events, e.g. 2001 WTC 9-11 & 2008 Mumbai Attacks, and 2011 Fukushima Nuclear Incident … rather than theory alone ;
  3. Are ‘Person-Centred’, i.e. that design process which places ‘real’ people at the centre of creative endeavours and gives due consideration to their responsible needs, and their health, safety, welfare and security in the Human Environment.

.

FireOx International’s Contact Information

E-Mail:  cjwalsh@sustainable-design.ie

International Phone:  +353 1 8386078   /   National Phone:  (01) 8386078

.

.

Important Note:  This Post should be read in conjunction with an earlier Post …

Sustainable Design International Ltd. – Our Practice Philosophy

It is there, not here, that we define Sustainable Human & Social Development … and describe how our Practice is responding to this open, intricate, dynamic, and still evolving concept.  The resulting transformation in how frontline services are provided to our Clients/Client Organizations ensures a much more comfortable ‘fit’ to their needs … and a greater level of protection, safety and security for society !

.

[ ** 2005 NIST(USA) Final Report on 9-11 World Trade Center 1 & 2 Tower Collapses

– Footnote 49 –

… the Design Professional in Responsible Chargeusually the lead architect – ensures that the (Design) Team Members use consistent design data and assumptions, co-ordinates overlapping specifications, and serves as the liaison with enforcement and review officials, and with the client or client organization. ]

.

.

END

Enhanced by Zemanta

Progressive Collapse of WTC 7 – 2008 NIST Recommendations – Part 2 of 2

1st Series of Posts on the 2005 NIST WTC 1 & 2 Collapse Recommendations … which began towards the end of 2011 …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

Previous Post in this New Series …

2012-01-18:  Progressive Collapse of WTC 7 – 2008 NIST Recommendations – Part 1 of 2 … GROUP 1. Increased Structural Integrity – Recommendation A … and GROUP 2. Enhanced Fire Endurance of Structures – Recommendations B, C, D & E (out of 13)

.

2012-01-22:  SOME PRELIMINARY COMMENTS …

  1.     Keeping my ear closely to the ground … I hear you wondering: “So … how did the fires actually start in World Trade Center Building 7 ?”

Extracts from the Executive Summary (pages xxxi – xxxv) – 2008 NIST NCSTAR 1A …

[ Refer back to the WTC 1 & 2 Collapse Damage Plan in the previous post.]

The fires in WTC Building 7 were ignited as a result of the impact of debris from the collapse of WTC Tower 1, which was approximately 110 metres to the south.  The debris also caused some structural damage to the south-west perimeter of WTC 7.  The fires were ignited on at least 10 floors;  however, only the fires on Floors 7 to 9 and 11 to 13 grew and lasted until the time of building collapse.  These uncontrolled fires had characteristics similar to those that have occurred previously in tall buildings.  Their growth and spread were consistent with ordinary building content fires.  Had a water supply for the automatic sprinkler system been available and had the sprinkler system operated as designed, it is likely that the fires in WTC 7 would have been controlled, and the collapse prevented.  However, the collapse of WTC 7 highlights the importance of designing fire resisting structures for situations where sprinklers are not present, do not function (e.g. due to disconnected or impaired water supply), or are overwhelmed.

and …

There were no serious injuries or fatalities, because the estimated 4,000 occupants of WTC 7 reacted to the airplane impacts on the two WTC Towers and began evacuating before there was significant damage to WTC 7.  The occupants were able to use both the elevators and the stairs, which were as yet not damaged, obstructed, or smoke-filled.  Evacuation of the building took just over an hour.  The potential for injuries to people leaving the building was mitigated by building management personnel holding the occupants in the lobby until they identified an exit path that was safe from the debris falling from WTC Tower 1.  The decisions not to continue evaluating the building and not to fight the fires were made hours before the building collapsed, so no emergency responders were in or near the building when the collapse occurred.

and …

The design of WTC 7 was generally consistent with the New York City Building Code of 1968 (NYCBC), with which, by policy, it was to comply.  The installed thickness of the thermal insulation on the floor beams was below that required for unsprinklered or sprinklered buildings, but it is unlikely that the collapse of WTC 7 could have been prevented even if the thickness had been consistent with building code requirements.  The stairwells were narrower than those required by the NYCBC, but, combined with the elevators, were adequate for a timely evacuation on 11 September 2001, since the number of building occupants was only about half that expected during normal business hours.

The collapse of WTC 7 could not have been prevented without controlling the fires before most of the combustible building contents were consumed.  There were two sources of water (gravity-fed overhead tanks and the city water main) for the standpipe and automatic sprinkler systems serving Floor 21 and above, and some of the early fires on those upper floors might have actually been controlled in this manner.  However, consistent with the NYCBC, both the primary and back-up source of water for the sprinkler system in the lower 20 floors of WTC 7 was the city water main.  Since the collapses of the WTC Towers had damaged the water main, there was no water available (such as the gravity-fed overhead tanks that supplied water to Floor 21 and above) to control those fires that eventually led to the building collapse.

Link to read and/or download a copy of the 2008 NIST NCSTAR 1A Report … www.fireox-international.eu/fire/structdesfire.htm 

.

  2.     On a separate subject and quite by chance … a few days ago, I was invited to review a technical paper for a reputable international fire engineering journal (which shall remain nameless).  The paper was discussing a certain aspect of steel column critical temperatures.  After three days, I replied to the journal’s editor as follows …

2012-01-18.

Most regrettably, I must decline your invitation to review Paper XYZ.

The ‘critical temperature’ approach to the fire engineering design of steel-framed structures is deeply flawed … and obsolete.

C. J. Walsh, FireOx International – Ireland, Italy & Turkey.

The ‘critical temperature’ approach is antiquated … and this nonsense has got to stop !   NOW … would be the best time !!

.

  3.     In the last post, I wrote …

Structural Fire Engineering is concerned with those aspects of fire engineering which relate to structural design for fire, and the complex architectural interaction between a building’s structure and fabric, i.e. non-structure, under conditions of fire and its immediate aftermath.

Indeed !   But, more needs to be added …

I hope it is becoming clearer now that Structural Fire Engineering is not just ambient structural engineering with a few extra ‘bells and whistles’ grafted on … in token consideration of what could happen in fire conditions, i.e. at high temperatures.

[ If, in some jurisdictions, there are no legal requirements to add even those ‘bells and whistles’ … then, typically, even they will be omitted ! ]

This brings me right back to the typical education of Civil/Structural Engineers;  because:  (i) they exit the educational system with little understanding of anything beyond ‘structure’ … in other words, a ‘real’ building, which also comprises ‘fabric’, i.e. non-structure, is a mystery to them;  and (ii) they have difficulty reading architectural drawings … which is why a walk-through inspection of a building, as it is nearing completion, is much preferred over a detailed discussion about drawings at the most appropriate stage, which is well before construction commences … when faults can be readily identified and easily rectified !

In ambient conditions … the architectural interaction between a building’s structure and fabric is difficult, not being entirely static.  Before the surface finishes have been applied, it is immediately obvious when this interaction has been properly ‘designed’, and looks neat and tidy … or, on the vast majority of construction sites, when this interaction is a ‘traffic accident’, and the results are desperately ugly … and you know that they can’t apply the surface finishes quickly enough in order to hide everything from view !

In fire conditions … this architectural interaction between building fabric and structure is complex, certainly very dynamic … and fluid !

It would be more appropriate to think of Structural Fire Engineering as ‘Design in the Hot Form’ … which is a completely different mindset.

It is essential, therefore, that Fire Engineers understand ‘real’ buildings … most importantly, the ‘design’ of real buildings … and, that they know which end is ‘up’ on a real construction site !!   See NIST WTC 7 Recommendation L below.

.

  4.     Since the collapse of WTC Building 7 on 11 September 2001, it has been generally assumed that Fire-Induced Progressive Collapse is a large-scale, macro-phenomenon only.  But, believe it or not, this phenomenon has also been observed at micro-level in small building types.

In fact … Progressive Collapse was already receiving sporadic attention, in Ireland, as far back as the 1980’s …

  • As organizer of the 1987 Dublin International Fire Conference: ‘Fire, Access & Safety in Residential Buildings’, I requested that the following Paper be presented … ‘Design against Progressive Collapse in Fire’ … by Dr. Willie Crowe, who was Head of Construction Technology, in the old Institute for Industrial Research & Standards (IIRS) in Ireland.  He later became Manager of the Irish Agrément Board (IAB).  Those were the days … and Willie really knew his stuff !

Mr. Noel C. Manning, of FireBar in Ireland (www.firebar.ie),  and I both contributed to the development of his Paper.

And now is as good a time as any to give full credit to Noel Manning for his innovative approach to Structural Fire Engineering back in the early 1980’s.  He’s a ‘hard man’ … a term that we use for some special people in Ireland !

Link to the Dublin International Fire Conferences, and a copy of this Paper … www.fireox-international.eu/fire/dublinfire.htm 

  • For approximately 12 years from the mid-1980’s, I was a Member of the National Masonry Panel – the National Standards Authority of Ireland (NSAI) Masonry Standards Advisory Committee.  A small, but substantial, text on Fire-Induced Progressive Collapse in Buildings was included, by me, in the following standard … Irish Standard 325: Code of Practice for Use in Masonry – Part 2: Masonry Construction (1995).  Appendix A – Determination of Movement in Masonry.  A.3 – Thermal Movement.  Once again … those were the days … when I was the only architect in a sea of engineers !!   Not a pretty experience.

.

  5.     What next ?   A final draft of the International CIB W14 Research WG IV Reflection Document on Fire-Induced Progressive Collapse will be completed in time for circulation to all CIB W14 members before the end of March 2012 … well in time for the next CIB W14 Meetings in Greece, near the end of April 2012.

.

2008 NIST WTC 7 RECOMMENDATIONS  (Final Report NCSTAR 1A)

5.1.3     GROUP 3.  New Methods for Fire Resisting Design of Structures

The procedures and practices used in the fire resisting design of structures should be enhanced by requiring an objective that uncontrolled fires result in burnout without partial or global (total) collapse.  Performance-based methods are an alternative to prescriptive design methods.  This effort should include the development and evaluation of new fire resisting coating materials and technologies, and evaluation of the fire performance of conventional and high-performance structural materials.

NIST WTC 7 Recommendation F  (NCSTAR 1  Recommendation 8).

NIST recommends that the fire resistance of structures be enhanced by requiring a performance objective that uncontrolled building fires result in burnout without partial or global (total) collapse.  Such a provision should recognize that sprinklers could be compromised, non-operational, or non-existent.  Current methods for determining the fire resistance of structural assemblies do not explicitly specify a performance objective.  The rating resulting from current test methods indicates that the assembly (component or sub-system) continued to support its superimposed load (simulating a maximum load condition) during the test exposure without collapse.  Model Building Codes:  This Recommendation should be included in the national model building codes as an objective, and adopted as an integral pert of the fire resistance design for structures.  The issue of non-operational sprinklers could be addressed using the existing concept of Design Scenario 8 of NFPA 5000, where such compromise is assumed and the result is required to be acceptable to the Authority Having Jurisdiction (AHJ).  Affected Standards:  ASCE-7, AISC Specifications, ACI 318, and ASCE/SFPE 29.

Relevance to WTC 7:  Large, uncontrolled fires led to failure of a critical column and consequently the complete collapse of WTC 7.  In the region of the collapse initiation (i.e. on the east side of Floor 13), the fire had consumed virtually all of the combustible building contents, yet collapse was not prevented.

.

NIST WTC 7 Recommendation G  (NCSTAR 1  Recommendation 9).

NIST recommends the development of:  (1) performance-based standards and code provisions, as an alternative to current prescriptive design methods, to enable the design and retrofit of structures to resist real building fire conditions, including their ability to achieve the performance objective of burnout without structural or local fire collapse;  and (2) the tools, guidelines, and test methods necessary to evaluate the fire performance of the structure as a whole system.  Standards development organizations, including the American Institute of Steel Construction, have already begun developing performance-based provisions to consider the effects of fire in structural design.

a.     Standard methodology, supported by performance criteria, analytical design tools, and practical design guidance;  related building standards and codes for fire resistance design and retrofit of structures, working through the consensus process for nationwide adoption;  comprehensive design rules and guidelines;  methodology for evaluating thermo-structural performance of structures;  and computational models and analysis procedures for use in routine design practice.

b.     Standard methodology for specifying multi-compartment, multi-floor fire scenarios for use in the design and analysis of structures to resist fires, accounting for building-specific conditions such as geometry, compartmentation, fuel load (e.g. building contents and any flammable fuels such as oil and gas), fire spread, and ventilation;  and methodology for rating the fire resistance of structural systems and barriers under realistic design-basis fire scenarios.

c.     Publicly available computational software to predict the effects of fires in buildings – developed, validated, and maintained through a national effort – for use in the design of fire protection systems and the analysis of building response to fires.  Improvements should include the fire behaviour and contribution of real combustibles;  the performance of openings, including door openings and window breakage, that controls the amount of oxygen available to support the growth and spread of fires and whether the fire is fuel-controlled or ventilation-controlled;  the floor-to-floor flame spread;  the temperature rise in both insulated and un-insulated structural members and fire barriers;  and the structural response of components, sub-systems, and the total building system due to the fire.

d.     Temperature-dependent thermal and mechanical property data for conventional and innovative construction materials.

e.     New test methods, together with associated conformance assessment criteria, to support the performance-based methods for fire resistance design and retrofit of structures.  The performance objective of burnout without collapse will require the development of standard fire exposures that differ from those currently used.

There is a critical gap in knowledge about how structures perform in real fires, particularly concerning: the effects of fire on the entire structural system (including thermal expansion effects at lower temperatures);  interaction between the sub-systems, elements, and connections;  and scaling of fire test results to full-scale structures (especially for structures with long-span floor systems).

Relevance to WTC 7:  A performance-based assessment of the effects of fire on WTC 7, had it considered all of the relevant thermal effects (e.g. thermal expansion effects that occur at lower temperatures), would have identified the vulnerability of the building to fire-induced progressive collapse and allowed alternative designs for the structural system.

.

5.1.4     GROUP 4.  Improved Active Fire Protection

Active fire protection systems (i.e. sprinklers, standpipes/hoses, fire alarms, and smoke management systems) should be enhanced through improvements to the design, performance, reliability, and redundancy of such systems.

NIST WTC 7 Recommendation H  (NCSTAR 1  Recommendation 12).

NIST recommends that the performance, and possibly the redundancy and reliability of active fire protection systems (sprinklers, standpipes/hoses, fire alarms, and smoke management systems), in buildings be enhanced to accommodate the greater risks associated with increasing building height and population, increased use of open spaces, high-risk building activities, fire department response limits, transient fuel loads, and higher threat profile.

Reliability is affected by (a) redundancy, such that when one water supply is out of service (usually for maintenance), the other interconnected water supply can continue to protect the building and its occupants;  (b) automatic operation of water supply systems (not only for starting fire pumps but also for testing and tank replenishment, with appropriate remote alarms to the fire department and local alarms for notifying emergency personnel);  and (c) the use of suitable equipment and techniques to regulate unusual pressure considerations.

Relevance to WTC 7:  No water was available for the automatic suppression systems on the lower 20 storeys of WTC 7, once water from street-level mains was disrupted.  This lack of reliability in the source of the primary and secondary water supplies allowed the growth and spread of fires that ultimately resulted in collapse of the building.

.

5.1.5     GROUP 6.  Improved Emergency Response

Technologies and procedures for emergency response should be improved to enable better access to buildings, response operations, emergency communications, and command and control in large-scale emergencies.

NIST WTC 7 Recommendation I  (NCSTAR 1  Recommendation 24).

NIST recommends the establishment and implementation of codes and protocols for ensuring effective and uninterrupted operation of the command and control system for large-scale building emergencies.

a.     State, local, and federal jurisdictions should implement the National Incident Management System (NIMS).  The jurisdictions should work with the Department of Homeland Security to review, test, evaluate, and implement an effective unified command and control system.  NIMS addresses interagency co-ordination and establishes a response matrix – assigning lead agency responsibilities for different types of emergencies, and functions.  At a minimum, each supporting agency should assign an individual to provide co-ordination with the lead agency at each incident command post.

b.     State, local, and federal emergency operations centres (EOC’s) should be located, designed, built, and operated with security and operational integrity as a key consideration.

c.     Command posts should be established outside the potential collapse footprint of any building which shows evidence of large multi-floor fires or has serious structural damage.  A continuous assessment of building stability and safety should be made in such emergencies to guide ongoing operations and enhance emergency responder safety.  The information necessary to make these assessments should be made available to those assigned responsibility (see related Recommendations 15 and 23 in NIST NCSTAR 1).

d.     An effective command system should be established and operating before a large number of emergency responders and apparatus are dispatched and deployed.  Through training and drills, emergency responders and ambulances should be required to await dispatch requests from the incident command system and not to self-dispatch in large-scale emergencies.

e.     Actions should be taken via training and drills to ensure a co-ordinated and effective emergency response at all levels of the incident command chain by requiring all emergency responders that are given an assignment to immediately adopt and execute the assignment objectives.

f.     Command post information and incident operations data should be managed and broadcast to command and control centres at remote locations so that information is secure and accessible by all personnel needing the information.  Methods should be developed and implemented so that any information that is available at an interior information centre is transmitted to an emergency responder vehicle or command post outside the building.

Relevance to WTC 7:  (1) The New York City Office of Emergency Management (OEM) was located in WTC 7 and was evacuated before key fire ground decisions had to be made.  The location of OEM in WTC 7, which collapsed due to ordinary building fires, contributed to the loss of robust interagency command and control on 11 September 2001.  (2) Due to the collapse of the WTC Towers and the loss of responders and fire control resources, there was an evolving site leadership during the morning and afternoon.  Key decisions (e.g. not to fight the fires in WTC 7 and to turn off power to the Con Edison substation) were reasonable and would not have changed the outcome on 11 September 2001, but were not made promptly.  Under different circumstances (e.g. if WTC 7 had collapsed sooner and firefighters were still evaluating the building condition), the outcome could have been very different.

.

5.1.6     GROUP 7.  Improved Procedures and Practices

The procedures and practices used in the design, construction, maintenance, and operation of buildings should be improved to include encouraging code compliance by non-governmental and quasi-governmental entities, adoption and application of evacuation and sprinkler requirements in codes for existing buildings, and retention and availability of building documents over the life of a building.

NIST WTC 7 Recommendation J  (NCSTAR 1  Recommendation 27).

NIST recommends that building codes incorporate a provision that requires building owners to retain documents, including supporting calculations and test data, related to building design, construction, maintenance, and modifications over the entire life of the building.*  Means should be developed for off-site storage and maintenance of the documents.  In addition, NIST recommends that relevant information be made available in suitably designed hard copy or electronic formats for use by emergency responders.  Such information should be easily accessible by responders during emergencies.

[ * F-12  The availability of inexpensive electronic storage media and tools for creating large searchable databases makes this feasible.]

Relevance to WTC 7:  The efforts required in locating and acquiring drawings, specifications, tenant layouts, and material certifications, and especially shop fabrication drawings, significantly lengthened the investigation into the collapse of WTC 7.

.

NIST WTC 7 Recommendation K  (NCSTAR 1  Recommendation 28).

NIST recommends that the role of the ‘Design Professional in Responsible Charge’* be clarified to ensure that:  (1) all appropriate design professionals (including, e.g. the fire protection engineer) are part of the design team providing the highest standard of care when designing buildings employing innovative or unusual fire safety systems;  and (2) all appropriate design professionals (including, e.g. the structural engineer and the fire protection engineer) are part of the design team providing the highest standard of care when designing the structure to resist fires, in buildings that employ innovative or unusual structural and fire safety systems.

[ * F-13  In projects involving a design team, the ‘Design Professional in Responsible Charge’ – usually the lead architect – ensures that the team members use consistent design data and assumptions, co-ordinates overlapping specifications, and serves as the liaison between the enforcement and reviewing officials and the owner.  This term is defined in the International Building Code (IBC) and in the International Code Council’s Performance Code for Buildings and Facilities (where it is the Principal Design Professional).]

Relevance to WTC 7:  Following typical practice, none of the design professionals in charge of the WTC 7 Project (i.e. architect – structural engineer – fire protection engineer) was assigned the responsibility to explicitly evaluate the fire performance of the structural system.  Holistic consideration of thermal and structural factors during the design or review stage could have identified the potential for the failure and might have prevented the collapse of the building.

.

5.1.7     GROUP 8.  Education and Training

The professional skills of building and fire safety professionals should be upgraded through a national education and training effort for fire protection engineers, structural engineers, and architects.  The skills of building regulatory and fire service personnel should also be upgraded to provide sufficient understanding and the necessary skills to conduct the review, inspection, and approval tasks for which they are responsible.

NIST WTC 7 Recommendation L  (NCSTAR 1  Recommendation 29).

NIST recommends that continuing education curricula be developed, and programmes be implemented for:  (1) training fire protection engineers and architects in structural engineering principles and design;  and (2) training structural engineers, architects, fire protection engineers, and code enforcement officials in modern fire protection principles and technologies, including the fire resisting design of structures;  and (3) training building regulatory and fire service personnel to upgrade their understanding and skills to conduct the review, inspection, and approval tasks for which they are responsible.  The outcome would further the integration of the disciplines in effective fire-safe design of buildings.

Relevance to WTC 7:  Discerning the fire-structure interactions that led to the collapse of WTC 7 required research professionals with expertise in both disciplines.  Assuring the safety of future buildings will require that participants in the design and review processes possess a combined knowledge of fire science, materials science, heat transfer, and structural engineering, and design.

.

NIST WTC 7 Recommendation M  (NCSTAR 1  Recommendation 30).

NIST recommends that academic, professional short-course, and web-based training materials in the use of computational fire dynamics and thermo-structural analysis tools be developed and delivered to strengthen the base of available technical capabilities and human resources.

Relevance to WTC 7:  NIST stretched the state-of-the-art in the computational tools needed to reconstruct a fire-induced progressive collapse.  This enabled identification of the critical processes that led to that collapse.  Making these expanded tools and derivative, validated, and simplified modelling approaches usable by practitioners could prevent future disasters.

.

.

END

Enhanced by Zemanta