design

2004 Rio de Janeiro Declaration on Sustainable Social Development, Disability & Ageing

2020-04-28:  A look back at a Benchmark Document, and an Introduction written nearly 16 years ago …

.

2004 Rio de Janeiro Declaration on Sustainable Social Development, Disability & Ageing  (Download PDF File, 306 Kb)

The words ‘green’, ‘environmental’, ‘ecological’ and ‘sustainable’ are becoming part of everyday language in the Developed World, but are frequently interchanged without understanding.  To date, however, the concept of Sustainable Development has been hijacked by Environmentalists.  For example, no connection at all may be seen between a ‘sustainable’ building and ensuring that it can be safely and conveniently entered and used by ordinary people.

In other parts of the World, the ambiguous WCED / Brundtland Definition of Sustainable Development is being systematically rejected ;  the concept is viewed as an unaffordable luxury and/or as a means of continued domination and control by the ‘North’.  Yet, sustainability must be a global compact.

In this intolerant and more fundamentalist 21st Century, the United Nations System, International Law, and Social Justice continue to come under sustained attack.  And the Beslan School Tragedy* demonstrates that it is far more hazardous for disadvantaged, vulnerable and indigenous peoples in every society.

[ * The 2004 Beslan School Massacre … https://en.wikipedia.org/wiki/Beslan_school_siege … and its commemoration 10 years later … https://www.rt.com/news/183964-beslan-school-hostage-crisis/ ]

Some specific objectives for the 2004 Rio Declaration were as follows …

  • To present a 2nd Generation Definition of Sustainable Development which is more acceptable to the Developing World ;
  • To restore primacy to the Social Aspects of Sustainable Development … and particularly the ethical values of Social Justice, Solidarity and Inclusion-for-All ;
  • To embed the concept of the ‘Person’ in Sustainable Development … rather than the fleeting reference to ‘People’ which too often results in Disadvantaged, Vulnerable and Indigenous Groups being left behind ;
  • To signal one of the main challenges of Sustainable Development ahead – which will be to establish a framework of horizontal co-ordination at the many institutional levels … and between the many actors and end users … in the human environment.

Adopted in December 2004, at the Brazil Designing for the 21st Century III Conference, the Rio Declaration consists of a Preamble, 10 Principles and 5 Appendices ;  its central concern involves People with Activity Limitations (2001 WHO ICF).

This Declaration extols implementation, and the targeting and monitoring of ‘real’ performance – as opposed to ‘imagined’ or ‘paper’ performance.

.

.

END

#Sustainability #SocialDevelopment #WCED #Brundtland #UN #SocialInclusion #InternationalLaw #SocialJustice #BeslanSchoolTragedy #VulnerablePeople #Disability #FrailOlderPeople #PwAL #2001whoICF #2004rioDeclaration #Brazil #RioDeJaneiro #SIA #GlobalPartnership #Design #SpatialPlanning #Engineering #IndustrialDesign #Accessibility4ALL

Lafcadio Hearn Japanese Gardens – Little Known Irish Gem

2020-03-24:  Established relatively recently, in 2015 … the Lafcadio Hearn Japanese Gardens are located in Tramore, County Waterford, in the south-east of Ireland.  Who Patrick Lafcadio Hearn (1850-1904) was, his Irish heritage, his historical links with Japan, and the layout of the Irish Gardens … can all be found at: http://lafcadiohearngardens.com/

Some special Sights & Sounds from a Visit to the Japanese Gardens on 13 March 2020 …

Photograph by CJ Walsh.  2020-03-13.  Click to enlarge.
Photograph by CJ Walsh.  2020-03-13.  Click to enlarge.
Photograph by CJ Walsh.  2020-03-13.  Click to enlarge.

.

.

Photograph by CJ Walsh.  2020-03-13.  Click to enlarge.

.

.

Photograph by CJ Walsh.  2020-03-13.  Click to enlarge.

.

.

Photograph by CJ Walsh.  2020-03-13.  Click to enlarge.
Photograph by CJ Walsh.  2020-03-13.  Click to enlarge.

Lafcadio Hearn’s Former Residence in Matsue, Japan … https://www.matsue-castle.jp/kyukyo/

.

.

END

#LafcadioHearn #Ireland #Japan #JapaneseGardens #Matsue #Tramore #Design #HumanEnvironment #Art #BuiltEnvironment

Grenfell Inquiry Recommendations (3) – Fire Alarms !!

Previous Posts In This New Series …

2019-10-31:  Grenfell Tower Fire Inquiry’s Phase 1 Report – Information

2019-11-11:  Grenfell Inquiry Recommendations (1) – Vulnerable People ?

2019-12-21:  Grenfell Inquiry Recommendations (2) – Fire Emergency Plans !

2020-03-23:  The Grenfell Fire Inquiry’s Phase 1 Recommendations (Part V in Volume 4 of the Phase 1 Report), were published on 30 October 2019.  The initial issues covered in those Recommendations are fragmentary, lack depth and coherence … and in the case of Fire Alarms, with just one indirect reference to them in Paragraph #33.22 … they are in serious error.

Colour image showing the Volume 4 Cover Page of the Grenfell Tower Inquiry Phase 1 Report.  The Phase 1 Recommendations are contained in Chapter #33, on Pages 771-780.  Click to enlarge.

[ Paragraph #33.22 ]  There were no plans in place for evacuating Grenfell Tower should the need arise.  I therefore recommend:

d. that all high-rise residential buildings (both those already in existence and those built in the future) be equipped with facilities for use by the fire and rescue services enabling them to send an evacuation signal to the whole or a selected part of the building by means of sounders or similar devices ;

.

FUNDAMENTALS OF A SOLUTION

1.  A Fire Alarm (more precisely from here on, a Fire Detection & Warning System) is a critical safety feature in all buildings … ALL BUILDINGS … from the smallest and most simple, to the biggest and most complex … no exceptions !!

In order to survive in a fire emergency, Vulnerable Building Users need more time to react, and evacuate, than other occupants/users.  The valuable time provided by early, accurate and precise detection is the only way to effectively facilitate this.  The ‘Required Time’ to prepare for evacuation depends on many factors, e.g. building complexity, familiarity of users with evacuation routes, range and severity of user activity limitations, etc.

It follows, therefore, that if building occupants/users have to wait 15, or 20, or 30 minutes before firefighters arrive at the fire scene (Full Response Time*) and ‘an evacuation signal to the whole or a selected part of the building’ is only then sent by those firefighters … all of that valuable evacuation time for vulnerable building users has been lost.  This is ridiculous, and makes no sense whatsoever.  This Recommendation must be rejected out of hand, and ignored !

[ *Full Response Time: The time interval from the receipt of an emergency communication at the primary public safety answering point (#PSAP) to when emergency response units are initiating action or intervening to control a fire incident. ]

Colour photograph showing the Single, Narrow Staircase (1.040 metres in width between a handrail on one side of the staircase and a bare wall on the other side) in London’s Grenfell Residential Tower.  This staircase, which was inadequately protected from fire, heat and smoke, was not wide enough to facilitate the ‘contraflow’ circulation of firefighters entering, while occupants evacuated at the same time.  Without a Fire Alarm in the building, occupants could not have known that a serious Fire Emergency was in progress … especially Vulnerable Building Users accommodated high up in the Tower … and they remained in place (‘stayed put’).  Once firefighters arrived at the scene, occupant evacuation using this staircase became impossible or extremely difficult.  Click to enlarge.

Important Note:  In Chapter #34: ‘Looking Ahead to Phase 2’ of Moore-Bick’s Phase 1 Report, Volume 4 … Paragraph #34.14 states …

A question was raised about the width of the stairs, given that they provided the sole means of access to the upper floors of the tower for firefighters as well as the sole means of escape for the occupants.  However, the stairs appear to have complied with requirements of the legislation in force at the time of their construction and the expert evidence supports the conclusion that they had sufficient capacity to enable all the occupants of the building to escape within a reasonable time.  This aspect of the building will not, therefore, be the subject of further investigation in Phase 2.’

Astounding !  Absurd !!  FUBAR !!!

.

All Fire Emergency Warning Systems must be designed to accommodate People with Hearing Impairments.  Audible and visual warning devices must be provided together, as a single combined unit.  This is particularly important in noisy and isolated building spaces, e.g. bathrooms, small meeting rooms.  Vibrating devices, such as pagers or mobile phones, can be integrated into a building’s fire emergency warning system in order to provide any individual with a tactile emergency alert.

Colour photograph showing a single combined visual-audible Fire Emergency Warning Device.  Click to enlarge.

Important Note:  Audible sounders, on their own, are never a sufficient Fire Emergency Warning !

2.  The Purpose of a Fire Emergency Warning System is to provoke calm, efficient and adaptable evacuation movement by ALL building users/occupants at the earliest possible stage in a fire incident, without causing user confusion, disorientation or panic. In all building types, therefore, a reliable, informative and accessible fire emergency warning system must be installed, and such a system must always have a fire protected electrical supply.

Colour photograph showing the movement of building occupants and users.  The purpose of a Fire Emergency Warning System is to provoke calm, efficient and adaptable evacuation movement by ALL building occupants at the earliest possible stage in a fire incident, without causing user confusion, disorientation or panic.  During a Fire Emergency, STANDARD MOVEMENT TIMES DO NOT EXIST.  Click to enlarge.

3.  To provoke a Calm Response from Building Users … the output from Fire Emergency Warning Devices, e.g. light, sound and messages, must be adapted to the local context of people and building surroundings.

Fire Emergency Audible Warnings … A sufficient number of low-output audible sounders, i.e. between 60-80 dB, must be specified for effectiveness.  Small numbers of sounders with high output (in order to reduce costs) should never be specified, as this can lead to confusion, disorientation and panic attacks among some building users/occupants.  The output of sounders must be adapted to suit interior surroundings, e.g. in small spaces with hard surfaces a lower sound output will be adequate.

Colour image.  The output from Fire Emergency Audible Sounders must be between 60-80 dB.

Important Note:  When they are asleep, hearing-able children (around ten years of age and under) … and hearing-able older people (around 65 years of age and over) are more difficult to wake and rouse sufficiently for evacuation when alerted by an audible signal alone.

Fire Emergency Visual Warnings … Light strobes/beacons must be clearly visible.  To reinforce #1 above … light strobes/beacons must be placed in wash rooms and in other locations within buildings where people may be alone ; they must also be placed in noisy environments.

A sufficient number of low-output strobes/beacons must be specified for effectiveness.  Small numbers of strobes/beacons with high output (in order to reduce costs) should never be specified, as these produce a glare which may cause confusion, disorientation and panic attacks among some building users/occupants.  The light output of strobes/beacons must be adapted to suit interior surroundings, e.g. in dark rooms.

For light strobes/beacons, a slow rate of flash is important, i.e. no faster than once every two or three seconds, in order to encourage a calm response from building users/occupants and to avoid photosensitivity seizures.  Most importantly, the flash of one strobe/beacon must be synchronized with the flashes of all other light strobes/beacons in view.

Colour video clip (.gif).  The output from Fire Emergency Visual Strobes / Beacons must be no faster than one flash every two or three seconds.  The flash rate shown above is too fast !   Click to run video clip.

Fire Emergency Voice Message Warnings … Are essential to improve Warning Credibility.  In other words, building users are far less likely to sit around wondering, waiting to see whether this is a ‘real’ fire emergency, a false alarm, a practice evacuation, or an electrical error.  Verbal or voice messages must be short and contain appropriate warning information which is easily assimilated.  The speaker should be distinct and easy to understand.  Live messaging during a fire emergency is preferred over pre-recorded, standard messages.  In today’s multi-cultural social environment, messages must be transmitted in at least two to three different languages, as appropriate.

Fire Emergency Directional Warnings … Combination sounder, visible strobe/beacon, and voice messaging Fire Emergency Warning Devices are now a mainstream technology, are readily available, and are being specified in new and existing buildings.

Colour image showing a combination Fire Emergency Directional Audible Sounder, with Voice Messaging capability.  Click to enlarge.

Audible directional signalling must be installed when dealing with difficult building configurations, e.g. in large open office layouts/spaces with minimal signage … where building users/occupants are unfamiliar with their surroundings in modern shopping centres/malls and other complex building types … or visibility of high-level signage may be reduced because of smoke logging.

Directional sounders, which guide building users during a Fire Evacuation towards Exits, Areas of Rescue Assistance and Lift/Elevator Lobbies, must be positioned at carefully chosen, suitable locations.  Once reached, a directional sounder must also have a voice messaging capability in order to inform people about the next phase of evacuation.

4.  Fire Emergency Warning Systems must be Accessible (for People with Activity Limitations), i.e. capable of transmitting a warning in many formats in order to ensure that all users/occupants perceive and act upon the warning in a calm manner and, thereafter, that effective evacuation movement commences without delay. Warning Credibility improves in direct relation to the type and number of different warning formats.

.

As well as indirectly referring to Fire Detection and Warning Systems, Paragraph #33.22 in Moore-Bick’s Phase 1 Recommendations has some other things to say about Evacuation.  So this is an opportune moment to discuss some practical and human issues concerning Fire Emergency Evacuation … and, straight away, to deal with an unexpected consequence arising from the current CoronaVirus/CoVID-19 Emergency …

CORONAVIRUS / CoVID-19 EMERGENCY

There have been widely reported instances, in many countries, of panic buying in shops because of the 2020 CoronaVirus/CoVID-19 Emergency … but the photograph below illustrates an example of a panic reaction by building management.  This appears to be a crime scene … the yellow and black tape is so dramatic.  In a real Fire Emergency, many building users/occupants will be reluctant to use this final fire exit ; they will not have the time to read the small print on a notice ; they will attempt to re-trace their path of evacuation and find another exit.

Colour photographs showing how, as a panic reaction to the 2020 CoronaVirus/CoVID-19 Emergency, a Final Fire Exit has been blocked off from normal, everyday use.  Click to enlarge.

This panic reaction by building management IS a serious impediment to Fire Evacuation !

Whatever the Motives of Building Management …

  • in countries which have Fire Codes / Regulations, this action is illegal ;   and
  • in these days, when a wide range of ‘smart’ technologies is readily available … this action is inexcusable.

SOME PRACTICAL FIRE EVACUATION ISSUES

A Skill is the ability of a person, resulting from competent training and regular practice, to carry out complex, well-organized patterns of behaviour efficiently and adaptively, in order to achieve some end or goal.  All building occupants/users must be skilled for evacuation to an external ‘place of safety’, which is at a safe and remote distance from the fire building.  Practice fire evacuations must be carried out sufficiently often to equip building users, particularly vulnerable users, with this skill, i.e. at least once every six months ; in complex building types, practices should be carried out more often.  Prior notification to occupants/users, and regular scheduling of practice evacuations should be avoided.

Familiarity with Fire Evacuation Routes will be fostered and greatly improved by means of normal, everyday use by occupants/users.  This is an important task for pro-active Building Management in existing buildings … and an important aspect of new building design for Architects and Fire Engineers.

While the transmission of fire emergency warnings in many formats will increase Warning Credibility, close observation of past tragic ‘real’ fire events, e.g. the WTC 9-11 Attacks in New York City, shows that initiation of evacuation and the actual process of evacuation itself can be problematic.  An interesting, easily assimilated and user-targeted skills programme of training should incorporate practical solutions to deal with the following typical problems:

  1. Fire Emergency Preparedness: Irregular attendance of building occupants/users at fire prevention and safety training sessions, and participation in practice fire evacuations. Users not being familiar with a building’s fire emergency management plan and not knowing who is in charge … not using a building’s fire evacuation route(s), particularly staircases, during practices … or having no information about where to assemble after evacuating … or, once at a place of safety, not having any head count or identification process ;
  2. Delaying Activities Inside The Fire Building: Once building occupants/users decide to evacuate, but before moving to evacuate, they gather personal effects … seek out friends/co-workers … search for others … make phone calls/send tweets … finish tasks/turn off computers … wait around for instructions … change shoes … and try to obtain permission to leave ;
  3. Delaying Activities Outside The Fire Building: Once outside the building’s final fire exit, but before moving directly to a place of safety, building occupants/users stop to see what is happening … look for friends/co-workers … look for a phone … do not know where to go … or, within the ‘danger zone’ of the fire building, stop to receive medical attention.

It may seem obvious that Fire Evacuation Routes must also be Accessible (for People with Activity Limitations), which also makes routes much safer for every other building user … and sufficiently wide to accommodate Contraflow (emergency access by firefighters or rescue teams into a building and towards a real fire, while building users are still moving away from the fire and evacuating the building) … a harsh lesson learned from the 2001 WTC 9-11 Attacks and the 2017 Grenfell Tower Fire. Since they are new, strange and unusual for many building designers, and most fire engineers … these aspects of building performance are overlooked in nearly every building.

Practice Evacuations should include exercise of the buddy system ; fire safety fittings, e.g. portable fire extinguishers ; and fire evacuation devices intended for use by people with activity limitations which will require more intensive training.

Colour image showing a range of personal Facilitation / Mobility Aids.  People with Activity Limitations must be allowed, and positively encouraged, to keep these Aids during practice and real fire evacuations.  Prior meaningful consultation (see below) is essential.  Click to enlarge.

Important Note:  During fire emergencies, People with Activity Limitations must be permitted to keep possession of their own personal Facilitation / Mobility Aids.

SOME HUMAN FIRE EVACUATION ISSUES

The actual people who use and occupy buildings are individuals.  They are different from each other, and they each have a different range of abilities (in relation to self-protection, independent evacuation to an external place of safety remote from a fire building, and active participation in a building’s fire emergency management plan), behaviour and manner of perceiving their surroundings.  Two apparently similar people will also show variations in how they react to and behave in any specific situation, particularly a fire emergency.

Ability / Disability is a Continuum – a gentle gradient on which every person functions and acts at different levels due to personal and environmental, i.e. external, factors.

In situations of severe stress, e.g. during a fire emergency in a building, where there is a lack of preparedness for such an event, a lack of familiarity with evacuation routes, lack of reliable evacuation information, lack of competent leadership and clear direction, and the presence of smoke, user/occupant confusion, disorientation and panic will occur.  Standard evacuation movement times will also be non-existent.  In addition, people with activity limitations must then deal with many physical barriers which routinely impede their evacuation from buildings, e.g. fire resisting doorsets which are difficult to open, steps along evacuation routes and at final fire exits.

In the case of people with a mental or cognitive impairment, there is a particular need to encourage, foster and regularly practice the adaptive thinking which will be necessary during evacuation a real fire incident.

People with respiratory health conditions will not be able to enter or pass through smoke.  People with visual impairments will require continuous, linked tactile and/or voice information during the whole process of fire evacuation.  People with psychological impairments, i.e. vertigo and agoraphobia, will be unable to use fire evacuation staircases with glass walls in high-rise buildings.  Because of the stigma still associated with disability in many countries, some users/occupants who will need assistance during a fire emergency will be reluctant to self-identify beforehand.  Other people may not even be able to recognize that they have an activity limitation or a health condition.

Meaningful Consultation with a person known to occupy or use a building, for the purposes of receiving his/her active co-operation and informed consent (involving a personal representative, if necessary), is an essential component of adequate pre-planning and preparation for a fire emergency.

Building Designers, Fire Engineers and Firefighters should be aware of the following human conditions:

Agoraphobia: A fear of open spaces.

Commentary: Agoraphobia is one of the most commonly cited phobic disorders of people seeking psychiatric or psychological treatment. It has a variety of manifestations, e.g. a deep fear of leaving a building, or of being caught alone in some public place. When placed in threatening situations, agoraphobics may experience a panic attack.

Anosognosia: A neurological disorder marked by the inability of a person to recognize that he/she has an activity limitation or a health condition.

Dementia: Any degenerative loss of intellectual capacity, to the extent that normal and occupational activities can no longer be carried out.

Panic: A sudden overwhelming feeling of anxiety, which may be of momentary or prolonged duration.

Panic Attack: A momentary period of intense fear or discomfort, accompanied by various symptoms which may include shortness of breath, dizziness, palpitations, trembling, sweating, nausea, and often a fear by a person that he/she is going mad.

.

.

END

#SFE #GrenfellTowerFire #FireSafety4ALL #NobodyLeftBehind #VulnerableBuildingUsers #PwAL #PwD #NeverStayPut #VulnerablePeople #Firefighters #FFsafety #FFhealth #2019GrenfellRecommendations #SFE #GrenfellTowerFireInquiry #London #FireResistingDoorsets #FireCompartmentation #FireProtection #FireEvacuation #MooreBick #FireEngineering #FireEngineers #IFE #England #RIBA #Design #Management #Construction #HighRiseResidentialBuildings #UDHR #HumanRights #unCRPD #Discrimination #AusterityKills #Justice4Grenfell #Contraflow #LocalFireServices #Skill4Evacuation #Resilience #CoronaVirus #CoVID19 #Panic #SIA

After Grenfell: Reliable Design, Supply & Construction Essential !

2017-10-10:  After the Grenfell Tower Fire Tragedy in London, on 14 June 2017, the integrity of the English Regulatory and Technical/Building Control Systems is now so compromised that a complete Systems Transformation is immediately required !   Closer to home, here in Ireland … what nobody is daring to say, even our tame media, is that Our Regulatory System is based very closely on the English System.  And Our Technical/Building Control System is purposefully under-resourced … so it is weak and ineffective.

Let there be no confusion … Priory Hall and Longboat Quay, both in Dublin, are just the tip of an enormous iceberg …

Colour photograph showing the Grenfell Tower Fire, in London … early in the morning, after dawn, on Wednesday, 14 June 2017.  Harsh, tragic Reality !  Click to enlarge.

So where do we start again ?

Reality – Reliability – Redundancy – Resilience !

With regard to Reliable Fire Engineering Related Design, Supply and Construction … this is how we must proceed …

  1. Design of the works is exercised by an independent, appropriately qualified and experienced architect/engineer/fire engineer, with design competence relating to the fire protection of buildings ;
  1. Supply of fire safety related construction products/systems to the works is undertaken by reputable organizations with construction competence, particularly in relation to the fire protection of buildings ;
  1. Installation/fitting of fire safety related construction products/systems is exercised by appropriately qualified and experienced personnel, with construction competence relating to the fire protection of buildings ;
  1. Supervision of the works is exercised by appropriately qualified and experienced personnel from the principal construction organization ;
  1. Regular inspections, by appropriately qualified and experienced personnel familiar with the design, and independent of both the design and construction organizations, are carried out to verify that the works are being executed in accordance with the design.

.

.

END

Firefighter Safety & Solar Photovoltaic Panels On Buildings ??

2016-09-14:  Only now are we really catching up with the extremely serious matter of Fire Safety in Sustainable Buildings … serious for building occupants … and firefighters !

‘ In order to achieve sustainable development, environmental protection and energy efficiency/conservation shall constitute integral parts of the development process, and shall not be considered in isolation.’

2016 Dublin Code of Ethics: Design, Engineering, Construction & Operation of a Safe, Resilient & Sustainable Built Environment for All   ( www.sfe-fire.eu )

The Performance Target for New Construction must be Positive Energy Buildings.

So … we will see more and more Solar Photovoltaic Panels installed on more and more buildings … in every country.  Certainly not less !   And, let’s face it, many will not be properly approved, i.e. shown to be ‘fit for their intended use’ …

Colour photograph showing a house fire caused by Solar Photovoltaic Roof Panels.
Colour photograph showing a house fire caused by Solar Photovoltaic Roof Panels.

At the beginning of this decade, a Fire Research Project was carried out by the Underwriters Laboratories Firefighter Research Institute in the USA … and it addressed the issue of firefighter vulnerability to electrical hazards, and serious injury, when fighting a fire involving Solar Photovoltaic (PV) Modules and Support Systems installed on buildings.

Colour photograph showing two firefighters on a roof, one with cutting equipment. Solar Photovoltaic Roof Panels restrict firefighter access to building interior roof spaces.
Colour photograph showing two firefighters on a roof, one with cutting equipment. Solar Photovoltaic Roof Panels restrict firefighter access to building interior roof spaces.

The Total Global Solar Energy Capacity averaged 40 % annual growth from 2000 to 2010 (source: International Energy Agency).  In the USA, Grid-Connected Solar Photovoltaic Capacity grew 50 % per year for much of that time (source: US Federal Energy Regulatory Commission).  These trends increase the potential of a Fire Service Response to a building having a Photovoltaic Installation, irrespective of the PV being involved with the initiation of the fire event.  As a result, conventional firefighter tactics for suppression, ventilation and overhaul have been complicated, leaving firefighters vulnerable to potentially unrecognized exposure.  Though the electrical and fire hazards associated with electrical generation and distribution systems are well known, PV Systems present unique safety concerns.  A limited body of knowledge and insufficient data exist to understand these risks … to the extent that Fire Services have been unable to develop safety solutions and respond in a safe manner.

This Fire Research Project developed the empirical data needed to quantify the hazards associated with PV Installations … and provided the foundation to modify current or develop new firefighting practices to reduce firefighter deaths and injury.

Colour photograph showing a large array of Solar Photovoltaic Panels on a roof. Extra loading on roof structures must be considered, as well as possible interference with roof fire evacuation routes for able-bodied occupants.
Colour photograph showing a large array of Solar Photovoltaic Panels on a roof. Extra loading on roof structures must be considered, as well as possible interference with roof fire evacuation routes for able-bodied occupants.

The Tactical Considerations addressed during the Project include:

  • Shock hazard due to the presence of water and PV power during fire suppression activities ;
  • Shock hazard due to the direct contact with energized components during firefighting operations ;
  • Emergency disconnect and disruption techniques ;
  • Severing of conductors ;
  • Assessment of PV power during low ambient light, artificial light and light from a fire ;
  • Assessment of potential shock hazard from damaged PV Modules and Systems.

.

Office of California’s State Fire Marshal – November 2010

Fire Operations for Photovoltaic Emergencies (CAL FIRE – 2010)  (PDF File, 1.99MB)

.

UL Report (2011):  The Following Summarizes the Findings of This Fire Research Project:

  1. The electric shock hazard due to the application of water is dependent on voltage, water conductivity, distance and spray pattern.  A slight adjustment from a solid fire hose stream towards a fog pattern (10 degree cone angle) reduced measured current below perception level.  Salt water should not be used on live electrical equipment.  A distance of 6 m has been determined to reduce potential shock hazard from a 1000 VDC source to a level below 2 mA, considered as safe.  It should be noted that pooled water or foam may become energized due to damage in the PV System.
  1. Outdoor weather exposure-rated electrical enclosures are not resistant to water penetration by fire hose streams.  A typical enclosure will collect water and present an electrical hazard.
  1. Firefighters’ gloves and boots afford limited protection against electrical shock provided the insulating surface is intact and dry.  They should not be considered equivalent to Electrical Personal Protective Equipment (PPE).
  1. Turning off an array is not as simple as opening a disconnect switch.  Depending on the individual system, there may be multiple circuits wired together to a common point such as a combiner box.  All circuits supplying power to this point must be interrupted to partially de-energize the system.  As long as the array is illuminated, parts of the system will remain energized.  Unlike a typical electrical or gas utility … on a PV Array, there is no single point of disconnect.
  1. Tarps offer varying degrees of effectiveness to interrupt the generation of power from a PV Array, independent of cost.  Heavy, densely woven fabric and dark plastic films reduce the power from PV to nearly zero.  As a general guide, if light can be seen through a tarp, it should not be used.  Caution should be exercised during the deployment of tarps on damaged equipment, as a wet tarp may become energized and conduct hazardous current if it contacts live equipment.  Also, firefighting foam should not be relied upon to block light.
  1. When illuminated by artificial light sources, such as Fire Department light trucks or an exposure fire, PV Systems are capable of producing electrical power sufficient to cause a lock-on hazard.
  1. Severely damaged PV Arrays are capable of producing hazardous conditions ranging from perception to electrocution.  Damage to the array may result in the creation of new and unexpected circuit paths.  These paths may include both array components (module frame, mounting racks, conduits, etc) and building components (metal roofs, flashings and gutters).  Care must be exercised during all operations, both interior and exterior.  Contacting a local professional PV Installation Company should be considered to mitigate potential hazards.
  1. Damage to modules from tools may result in both electrical and fire hazards.  The hazard may occur at the point of damage or at other locations depending on the electrical path. Metal roofs present unique challenges in that the surface is conductive unlike other types such as shingle, ballasted or single ply.
  1. Severing of conductors in both metal and plastic conduit results in electrical and fire hazards.  Care must be exercised during ventilation and overhaul.
  1. Responding personnel must stay away from the roofline in the event of modules or sections of an array sliding off the roof.
  1. Fires under an array but above the roof may breach roofing materials and decking … allowing fire to propagate into the attic space of the building.

.

.

END

FireOx ‘Fire Safety for All’ Matrix – Revised & Updated

2014-10-17:  Within the professional discipline of Fire Engineering … either a building is ‘fire safe’, or it is not.  The Design Philosophy of the Fire Engineer is irrelevant.  In fact, nearly everybody involved with fire safety in buildings would collapse in a fit of laughter at the delusional notion that a design philosophy was relevant.  People’s lives are at stake !

Similarly, now, we must begin to think and act in the simple terms of a building either being ‘accessible’, or not.  At stake, this time, is the quality of life and living for very many vulnerable people in all of our societies.

Accessibility for All, according to International Standard ISO 21542 (2011) … includes the approach, entry to and use of a building, egress during normal conditions and removal from the vicinity of the building … and, most importantly, evacuation during a fire incident to a ‘place of safety’ which is remote from the building.

Concerning that All above … FireOx International’s ‘Fire Safety for All’ Matrix shows who exactly we are talking about … and who must be considered in the development of a Fire Safety Strategy for every building … not just some buildings !

This is not just good design practice … it is also mandated in International Human Rights Law.

.

Colour image showing FireOx International's 'Fire Safety for All' Matrix.  Revised and Updated in October 2014.  FireOx International is the Fire Engineering Division of Sustainable Design International Ltd. (Ireland, Italy & Turkey).  For a clearer and sharper print, download the PDF File below.  Matrix developed by CJ Walsh.  Latest revision suggested by Jo Kwan (Hong Kong).
Colour image showing FireOx International’s ‘Fire Safety for All’ Matrix.  Revised and Updated on 24 October 2014.  FireOx International is the Fire Engineering Division of Sustainable Design International Ltd. (Ireland, Italy & Turkey).  For a clearer and sharper print, download the PDF File below.  Matrix developed by CJ Walsh.  Latest revision suggested by Jo Kwan (Hong Kong).

FireOx International’s ‘Fire Safety for All’ Matrix (2014) – PDF File, 25 Kb

.

Building Fire Safety Codes and Standards exist in almost every country.  However – IF they exist at all – those guidelines relating to the Fire Safety of People with Activity Limitations are technically inadequate, entirely tokenistic and/or blatantly discriminatory.

Refer to my previous post … BS 9999:2008 & BS 8300:2009 – Sleepwalking into Problems ?

It is time to Reboot this ridiculous, professionally negligent and obsolete old system … Reload with innovative and practical building design, construction, management and personal self-protection solutions … and Implement !

Fire Safety for All !

2015 ‘Fire Safety for All’ Global CSR Event – Dublin, 9 & 10 April

Register Now !

.

.

END

‘Person-Centred’ Design & Climate Change Policy Development

2013-07-01:   Sustainable Design Solutions are …

  • Person-Centred ;
  • Reliability-Based ;    and most importantly
  • Adapted to Local Context and Heritage (fr: le Patrimoine – see ICOMOS 2011) … geography, climate (incl. change, variability and severity swings), social need, culture, and economy, etc., etc.

‘Person-Centredness’ is a core value of Sustainable Human & Social Development … an essential principle in Sustainable Design … an indispensable support framework for Sustainability-related Policy and Decision-making … and an invaluable indicator when monitoring Sustainability Implementation.

.

Why so because ?

It is the mid-1990’s … in the centre of Dublin City.

Imagine, if you will, a very large historical building having a civic, justice-related function … and also an enormous Energy Bill.  As described in a much earlier post, dated 2009-02-20, and the series of posts which followed on the subject of Building Energy Rating (BER) … we found that the most effective and practical remedy for this gaping and continuously haemorrhaging ‘energy’ wound was to approach the problem though the building’s users, their perception of thermal comfort, and International Standard ISO 7730.

The ‘real’ reduction in energy consumption, the ‘real’ increase in the building’s energy efficiency, and the ‘real’ improvements in building user / employee comfort and morale … were astounding !

.

'Person-Centredness' (Concept 1)At a 1999 Strasbourg Conference in France … I delivered the following Paper …

Person-Centredness’ of the Built Environment – A Core Value of Sustainable Design

.

INTRODUCTION from that Paper …

These are interesting times;  the benefits of modern technology have bypassed and long overtaken the stirring thoughts, visions and catch cries of Architects at the beginning of the 20th Century.  However, at this time in Europe, we must now ask ourselves some difficult questions …

“What should be the Design Agenda for the ‘Built Environment’ in the new millennium ?”

“Do we actually understand the ‘real’ needs and desires of ‘real’ people in an inclusive society ?”

It is Sustainable Design – the art and science of the design, supervision of related construction/de-construction, and maintenance of sustainability in the Built Environment – which is currently generating a quantum leap in the forward evolution of a more coherent design philosophy.

Principle 1 of the 1992 Rio Declaration on Environment and Development states …

‘Human beings are at the centre of concerns for sustainable development.  They are entitled to a healthy and productive life in harmony with nature.’

Deeply embedded, therefore, within this philosophy is the concept of ‘person-centredness’, i.e. that core design value which places real people at the centre of creative concerns, and gives due consideration to their health, safety, and welfare in the Built Environment – it includes such specific performance criteria as:  a sensory rich and accessible (mobility, usability, communications and information) environment;  fire safety;  thermal comfort;  air, light and visual quality;  protection from ionizing / electromagnetic radiation;  nuisance noise abatement;  etc.  An important ‘person-centred’ design aid is the questionnaire survey, which is not only a very valuable source of information, but formalizes meaningful consultation between practitioners and end users.

SDI’s Guideline Framework on achieving equality of opportunity and social inclusion, which is based on a strategy produced by Directorate-General V of the European Commission, shows how further essential elements of ‘social wellbeing’ also relate to person-centredness;  these include partnership between all sectors of society, consensus, transparency and openness.

This paper explores the rational and legal basis for person-centredness of the Built Environment in Europe.  Fieldwork incorporating this innovative approach is also examined.  Finally, a body of principles – a European Charter – is outlined which aims to ensure that new construction works, and renovated existing buildings, perform reliably, are adaptable, accessible and responsive, ‘intelligently green’ (French: intelli-verdure), cost-effective and inherently sustainable.

.

'Person-Centredness' (Concept 2).

CLIMATE CHANGE ADAPTATION & MITIGATION POLICIES

AND BEFORE developing Climate Change Policies which will have such dramatic impacts on human populations, and their lifestyles, around the globe … perhaps those policies would be more effective, in the ‘real’ world and in the long-term … if we looked at the problem through the ‘eyes’ of people !

It will be worth taking a look at an interesting background paper produced by the World Bank in 2009 … whether you agree or disagree with the following statements …

“A lack of citizen understanding regarding the basics of climate science is an almost universal finding worldwide even though knowledge has increased over time.  Especially notable is confusion between the causes of climate change and ozone depletion, and confusion between weather and climate.”

“North Americans know far less about climate change than their counterparts in the developed world.”

“Accurate and complete understanding of information is not a prerequisite for concern.”

“Concern is widespread around the world, but it may also be inversely correlated with the wealth and carbon footprint of a nation, or the socio-economic ‘class’ within a nation.”

“In some studies, more informed respondents reported less concern or sense of responsibility towards climate change.”

“People stop paying attention to global climate change when they realize that there is no easy solution for it.  Many people judge as serious only those problems for which they think action can be taken.”

.

World Bank Paper 4940: 'Cognitive & Behavioural Challenges in Responding to Climate Change' (2009) - Title PagePolicy Research Working Paper No.4940 (May 2009) – Kari Marie Norgaard

Cognitive & Behavioural Challenges in Responding to Climate Change (World Bank, 2009)

Click the Link Above to read and/or download PDF File (290 Kb)

This World Bank Working Paper – prepared as a background paper to the World Bank’s World Development Report 2010: Development in a Changing Climate.  Policy Research Working Papers are posted on the Web at http://econ.worldbank.org

.

World Bank Working Paper 4940 (2009) – ABSTRACT …

Climate scientists have identified global warming as the most important environmental issue of our time, but it has taken over 20 years for the problem to penetrate the public discourse in even the most superficial manner.  While some nations have done better than others, no nation has adequately reduced emissions and no nation has a base of public citizens that are sufficiently socially and politically engaged in response to climate change.  This paper summarizes international and national differences in levels of knowledge and concern regarding climate change, and the existing explanations for the worldwide failure of public response to climate change, drawing from psychology, social psychology and sociology.  On the whole, the widely presumed links between public access to information on climate change and levels of concern and action are not supported.  The paper’s key findings emphasize the presence of negative emotions in conjunction with global warming (fear, guilt, and helplessness), and the process of emotion management and cultural norms in the construction of a social reality in which climate change is held at arms length.  Barriers in responding to climate change are placed into three broad categories:  1) psychological and conceptual;  2) social and cultural;  and 3) structural (political economy).  The author provides policy considerations and summarizes the policy implications of both psychological and conceptual barriers, and social and cultural barriers. An annotated bibliography is included.

.

Is anybody learning yet ?

.

.

END

Enhanced by Zemanta

Upcoming Building Research Workshop at Galway University

2013-06-08:  Looking forward to some serious, collaborative and multi-disciplinary discussions on the day … and a barrel of laughs in the process (!!) …

The Informatics Research Unit for Sustainable Engineering (IRUSE) in the Department of Civil Engineering … and The Ryan Institute for Environmental, Marine and Energy Research … both at the National University of Ireland Galway (NUIG) … have jointly organized a 1-Day National Research Networking Workshop which will take place on Monday, 24 June 2013.

The NUIG ‘blurb’ for the day states … “Considering the importance of aggressive energy-efficiency measures in the Building Sector, together with the requirements for a safe, healthy, comfortable (and accessible) Built Environment … this NUIG Workshop will explore the topic of Integrated Modelling and Performance of the Built Environment.”

.

I was very pleased to receive an invitation to make a Presentation at this prestigious event …

‘Sustainable Fire Engineering Design’  –  My Presentation Abstract

Fire Engineering … involves much more than mere compliance with building regulations and codes … whose fire safety objectives are limited, and whose performance requirements are sometimes inadequate and always minimal.  More problematically … a fundamental conflict is mushrooming between Safe Sustainable Climate Resilient Building Design and Conventional Fire Consultancy Practice.

However … Sustainable Fire Engineering Design Solutions are:

  • Reliability-based ;
  • Person-centred ;

and above all

  • Adapted to Local Context and Heritage (fr: le Patrimoine – see ICOMOS 2011) … geography, climate (incl. change, variability and severity swings), social need, culture, and economy, etc., etc.

This Presentation will discuss very rich collaborative research potential in the following areas …

  1. Creative Fire Engineering Concepts and Building Systems
  2. Fire-Induced Progressive Damage in Buildings
  3. Human Behaviour and Abilities in a Fire Situation
  4. Building Design for Firefighter Safety
  5. BMS – Fire Modelling – BIM

Research Output must be targeted at practical implementation in ‘real’ buildings … with actual user/construction performance carefully (i.e. reliably and precisely) monitored !

.

If anybody out there is interested in attending this NUIG Research Workshop … please contact Ms. Magdalena Hajdukiewicz (IRUSE) at: hajdukiewicz1@nuigalway.ie

.

.

POST-EVENT UPDATE:  2013-06-27 …

While it was difficult to keep the Workshop Programme, involving a series of short 10-minute presentation slots, on track … discussions during the day were engaging, energetic and extensive.

I happily look forward to a successful and collaborative outcome from the day … Multi-Disciplinary Teams producing Trans-Disciplinary Research Output … which is geared towards practical implementation in ‘real’ buildings, with actual construction and building user performance carefully (i.e. reliably and precisely) monitored !

Galway University (NUIG) Workshop Programme & Presentation Abstracts

Click the Link Above to read and/or download PDF File (193 Kb)

Galway University (NUIG) Built Environment Research Networking Workshop - 24 June 2013
Colour photograph showing the venue for the IRUSE & The Ryan Institute (Galway University – NUIG) Built Environment Research Networking Workshop, which was held in the New Engineering Building on 24 June 2013. Seen here is Dr. Harald Berresheim during his presentation on ‘The Self-Cleansing Capacity of Our Atmosphere – Limitations on Local to Global Scales’. Photograph taken by CJ Walsh. 2013-06-24. Click to enlarge.

.

CJ Walsh Presentation: ‘Sustainable Fire Engineering Design’

Click the Link Above to read and/or download PDF File (1.78 MB)

.

However … and especially since the Workshop had been organized by IRUSE (the ‘SE’ standing for ‘Sustainable Engineering’) … it was indeed very strange to have to clarify the following points, among others:

1.   The Minimum Life Cycle for a Sustainable Building is 100 Years … not 50 or 60 years !

2.   Future Research Collaboration should be targeted at the multi-aspect ‘Sustainability Agenda’.  The word ‘green’ (where only environmental aspects of sustainability are considered) should be actively discouraged, if not banned entirely !

3.   With regard to Good Indoor Air Quality (IAQ) … two high-level performance indicators which have been developed with the aim of protecting human health, and are both now referenced in International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’ … are …

      –   Radon Activity (incl. Rn-222, Rn-220, RnD) in a building should, on average, fall within the range of 10 Bq/m3 to 40 Bq/m3, but should at no time exceed 60 Bq/m3 ;

      –   Carbon Dioxide (CO2) Concentrations in a building should not significantly exceed average external levels – typically within the range of 300 parts per million (ppm) to 500 ppm – and should at no time exceed 800 ppm.

.

Galway University’s New Engineering Building

Concerning the substantive difference in meaning and scope between ‘sustainable’ and ‘green’ … there is, perhaps, no better way to illustrate this difference than to observe the atrocious ‘Accessibility-for-All’ Performance (Accessibility for People with Activity Limitations !) of the critically acclaimed (?!?) and award winning (?!?) New Engineering Building in Galway University … which flaunts its ‘über-green’ credentials …

Galway University's New Engineering Building - Inadequate Accessibility-for-All (1)

Galway University's New Engineering Building - Inadequate Accessibility-for-All (2)

Galway University's New Engineering Building - Inadequate Accessibility-for-All (3)

Galway University's New Engineering Building - Inadequate Accessibility-for-All (4)

Galway University's New Engineering Building - Inadequate Accessibility-for-All (5)

Can you believe what’s in those photographs ??   More importantly … can you believe what’s not in those photographs ????   In such a recently completed building … “incredible” is the only answer to both questions.

.

Under International Law … lack of accessibility, or inadequate accessibility, to the social, built, virtual and economic environments … IS a denial and infringement of the basic human rights of people with activity limitations.  It also limits, needlessly and unnecessarily, the numbers of potential users of those environments … which makes no sense at all.

My strong recommendation to Galway University … is to immediately commission a Competent Accessibility Consultant to give the university campus a thorough going over !   You are failing the campus user population … the local community in Galway … and Irish society generally.

My even stronger recommendation to the Architects for the New Engineering BuildingRMJM Architects (Robert Matthew Johnson-Marshall) in Scotland, and Taylor Architects in Ireland … is to always commission a Competent Accessibility Consultant on all of your projects … small, medium and large … because you haven’t a bull’s notion about this important dimension of building performance !!

And remember folks … Accessibility has been clearly specified in the new International Standard ISO 21542 as including … ‘access to buildings, circulation within buildings and their use, egress from buildings in the normal course of events, and evacuation in the event of an emergency’.

.

.

END

 

Enhanced by Zemanta