England

Grenfell Inquiry Recommendations (3) – Fire Alarms !!

Previous Posts In This New Series …

2019-10-31:  Grenfell Tower Fire Inquiry’s Phase 1 Report – Information

2019-11-11:  Grenfell Inquiry Recommendations (1) – Vulnerable People ?

2019-12-21:  Grenfell Inquiry Recommendations (2) – Fire Emergency Plans !

2020-03-23:  The Grenfell Fire Inquiry’s Phase 1 Recommendations (Part V in Volume 4 of the Phase 1 Report), were published on 30 October 2019.  The initial issues covered in those Recommendations are fragmentary, lack depth and coherence … and in the case of Fire Alarms, with just one indirect reference to them in Paragraph #33.22 … they are in serious error.

Colour image showing the Volume 4 Cover Page of the Grenfell Tower Inquiry Phase 1 Report.  The Phase 1 Recommendations are contained in Chapter #33, on Pages 771-780.  Click to enlarge.

[ Paragraph #33.22 ]  There were no plans in place for evacuating Grenfell Tower should the need arise.  I therefore recommend:

d. that all high-rise residential buildings (both those already in existence and those built in the future) be equipped with facilities for use by the fire and rescue services enabling them to send an evacuation signal to the whole or a selected part of the building by means of sounders or similar devices ;

.

FUNDAMENTALS OF A SOLUTION

1.  A Fire Alarm (more precisely from here on, a Fire Detection & Warning System) is a critical safety feature in all buildings … ALL BUILDINGS … from the smallest and most simple, to the biggest and most complex … no exceptions !!

In order to survive in a fire emergency, Vulnerable Building Users need more time to react, and evacuate, than other occupants/users.  The valuable time provided by early, accurate and precise detection is the only way to effectively facilitate this.  The ‘Required Time’ to prepare for evacuation depends on many factors, e.g. building complexity, familiarity of users with evacuation routes, range and severity of user activity limitations, etc.

It follows, therefore, that if building occupants/users have to wait 15, or 20, or 30 minutes before firefighters arrive at the fire scene (Full Response Time*) and ‘an evacuation signal to the whole or a selected part of the building’ is only then sent by those firefighters … all of that valuable evacuation time for vulnerable building users has been lost.  This is ridiculous, and makes no sense whatsoever.  This Recommendation must be rejected out of hand, and ignored !

[ *Full Response Time: The time interval from the receipt of an emergency communication at the primary public safety answering point (#PSAP) to when emergency response units are initiating action or intervening to control a fire incident. ]

Colour photograph showing the Single, Narrow Staircase (1.040 metres in width between a handrail on one side of the staircase and a bare wall on the other side) in London’s Grenfell Residential Tower.  This staircase, which was inadequately protected from fire, heat and smoke, was not wide enough to facilitate the ‘contraflow’ circulation of firefighters entering, while occupants evacuated at the same time.  Without a Fire Alarm in the building, occupants could not have known that a serious Fire Emergency was in progress … especially Vulnerable Building Users accommodated high up in the Tower … and they remained in place (‘stayed put’).  Once firefighters arrived at the scene, occupant evacuation using this staircase became impossible or extremely difficult.  Click to enlarge.

Important Note:  In Chapter #34: ‘Looking Ahead to Phase 2’ of Moore-Bick’s Phase 1 Report, Volume 4 … Paragraph #34.14 states …

A question was raised about the width of the stairs, given that they provided the sole means of access to the upper floors of the tower for firefighters as well as the sole means of escape for the occupants.  However, the stairs appear to have complied with requirements of the legislation in force at the time of their construction and the expert evidence supports the conclusion that they had sufficient capacity to enable all the occupants of the building to escape within a reasonable time.  This aspect of the building will not, therefore, be the subject of further investigation in Phase 2.’

Astounding !  Absurd !!  FUBAR !!!

.

All Fire Emergency Warning Systems must be designed to accommodate People with Hearing Impairments.  Audible and visual warning devices must be provided together, as a single combined unit.  This is particularly important in noisy and isolated building spaces, e.g. bathrooms, small meeting rooms.  Vibrating devices, such as pagers or mobile phones, can be integrated into a building’s fire emergency warning system in order to provide any individual with a tactile emergency alert.

Colour photograph showing a single combined visual-audible Fire Emergency Warning Device.  Click to enlarge.

Important Note:  Audible sounders, on their own, are never a sufficient Fire Emergency Warning !

2.  The Purpose of a Fire Emergency Warning System is to provoke calm, efficient and adaptable evacuation movement by ALL building users/occupants at the earliest possible stage in a fire incident, without causing user confusion, disorientation or panic. In all building types, therefore, a reliable, informative and accessible fire emergency warning system must be installed, and such a system must always have a fire protected electrical supply.

Colour photograph showing the movement of building occupants and users.  The purpose of a Fire Emergency Warning System is to provoke calm, efficient and adaptable evacuation movement by ALL building occupants at the earliest possible stage in a fire incident, without causing user confusion, disorientation or panic.  During a Fire Emergency, STANDARD MOVEMENT TIMES DO NOT EXIST.  Click to enlarge.

3.  To provoke a Calm Response from Building Users … the output from Fire Emergency Warning Devices, e.g. light, sound and messages, must be adapted to the local context of people and building surroundings.

Fire Emergency Audible Warnings … A sufficient number of low-output audible sounders, i.e. between 60-80 dB, must be specified for effectiveness.  Small numbers of sounders with high output (in order to reduce costs) should never be specified, as this can lead to confusion, disorientation and panic attacks among some building users/occupants.  The output of sounders must be adapted to suit interior surroundings, e.g. in small spaces with hard surfaces a lower sound output will be adequate.

Colour image.  The output from Fire Emergency Audible Sounders must be between 60-80 dB.

Important Note:  When they are asleep, hearing-able children (around ten years of age and under) … and hearing-able older people (around 65 years of age and over) are more difficult to wake and rouse sufficiently for evacuation when alerted by an audible signal alone.

Fire Emergency Visual Warnings … Light strobes/beacons must be clearly visible.  To reinforce #1 above … light strobes/beacons must be placed in wash rooms and in other locations within buildings where people may be alone ; they must also be placed in noisy environments.

A sufficient number of low-output strobes/beacons must be specified for effectiveness.  Small numbers of strobes/beacons with high output (in order to reduce costs) should never be specified, as these produce a glare which may cause confusion, disorientation and panic attacks among some building users/occupants.  The light output of strobes/beacons must be adapted to suit interior surroundings, e.g. in dark rooms.

For light strobes/beacons, a slow rate of flash is important, i.e. no faster than once every two or three seconds, in order to encourage a calm response from building users/occupants and to avoid photosensitivity seizures.  Most importantly, the flash of one strobe/beacon must be synchronized with the flashes of all other light strobes/beacons in view.

Colour video clip (.gif).  The output from Fire Emergency Visual Strobes / Beacons must be no faster than one flash every two or three seconds.  The flash rate shown above is too fast !   Click to run video clip.

Fire Emergency Voice Message Warnings … Are essential to improve Warning Credibility.  In other words, building users are far less likely to sit around wondering, waiting to see whether this is a ‘real’ fire emergency, a false alarm, a practice evacuation, or an electrical error.  Verbal or voice messages must be short and contain appropriate warning information which is easily assimilated.  The speaker should be distinct and easy to understand.  Live messaging during a fire emergency is preferred over pre-recorded, standard messages.  In today’s multi-cultural social environment, messages must be transmitted in at least two to three different languages, as appropriate.

Fire Emergency Directional Warnings … Combination sounder, visible strobe/beacon, and voice messaging Fire Emergency Warning Devices are now a mainstream technology, are readily available, and are being specified in new and existing buildings.

Colour image showing a combination Fire Emergency Directional Audible Sounder, with Voice Messaging capability.  Click to enlarge.

Audible directional signalling must be installed when dealing with difficult building configurations, e.g. in large open office layouts/spaces with minimal signage … where building users/occupants are unfamiliar with their surroundings in modern shopping centres/malls and other complex building types … or visibility of high-level signage may be reduced because of smoke logging.

Directional sounders, which guide building users during a Fire Evacuation towards Exits, Areas of Rescue Assistance and Lift/Elevator Lobbies, must be positioned at carefully chosen, suitable locations.  Once reached, a directional sounder must also have a voice messaging capability in order to inform people about the next phase of evacuation.

4.  Fire Emergency Warning Systems must be Accessible (for People with Activity Limitations), i.e. capable of transmitting a warning in many formats in order to ensure that all users/occupants perceive and act upon the warning in a calm manner and, thereafter, that effective evacuation movement commences without delay. Warning Credibility improves in direct relation to the type and number of different warning formats.

.

As well as indirectly referring to Fire Detection and Warning Systems, Paragraph #33.22 in Moore-Bick’s Phase 1 Recommendations has some other things to say about Evacuation.  So this is an opportune moment to discuss some practical and human issues concerning Fire Emergency Evacuation … and, straight away, to deal with an unexpected consequence arising from the current CoronaVirus/CoVID-19 Emergency …

CORONAVIRUS / CoVID-19 EMERGENCY

There have been widely reported instances, in many countries, of panic buying in shops because of the 2020 CoronaVirus/CoVID-19 Emergency … but the photograph below illustrates an example of a panic reaction by building management.  This appears to be a crime scene … the yellow and black tape is so dramatic.  In a real Fire Emergency, many building users/occupants will be reluctant to use this final fire exit ; they will not have the time to read the small print on a notice ; they will attempt to re-trace their path of evacuation and find another exit.

Colour photographs showing how, as a panic reaction to the 2020 CoronaVirus/CoVID-19 Emergency, a Final Fire Exit has been blocked off from normal, everyday use.  Click to enlarge.

This panic reaction by building management IS a serious impediment to Fire Evacuation !

Whatever the Motives of Building Management …

  • in countries which have Fire Codes / Regulations, this action is illegal ;   and
  • in these days, when a wide range of ‘smart’ technologies is readily available … this action is inexcusable.

SOME PRACTICAL FIRE EVACUATION ISSUES

A Skill is the ability of a person, resulting from competent training and regular practice, to carry out complex, well-organized patterns of behaviour efficiently and adaptively, in order to achieve some end or goal.  All building occupants/users must be skilled for evacuation to an external ‘place of safety’, which is at a safe and remote distance from the fire building.  Practice fire evacuations must be carried out sufficiently often to equip building users, particularly vulnerable users, with this skill, i.e. at least once every six months ; in complex building types, practices should be carried out more often.  Prior notification to occupants/users, and regular scheduling of practice evacuations should be avoided.

Familiarity with Fire Evacuation Routes will be fostered and greatly improved by means of normal, everyday use by occupants/users.  This is an important task for pro-active Building Management in existing buildings … and an important aspect of new building design for Architects and Fire Engineers.

While the transmission of fire emergency warnings in many formats will increase Warning Credibility, close observation of past tragic ‘real’ fire events, e.g. the WTC 9-11 Attacks in New York City, shows that initiation of evacuation and the actual process of evacuation itself can be problematic.  An interesting, easily assimilated and user-targeted skills programme of training should incorporate practical solutions to deal with the following typical problems:

  1. Fire Emergency Preparedness: Irregular attendance of building occupants/users at fire prevention and safety training sessions, and participation in practice fire evacuations. Users not being familiar with a building’s fire emergency management plan and not knowing who is in charge … not using a building’s fire evacuation route(s), particularly staircases, during practices … or having no information about where to assemble after evacuating … or, once at a place of safety, not having any head count or identification process ;
  2. Delaying Activities Inside The Fire Building: Once building occupants/users decide to evacuate, but before moving to evacuate, they gather personal effects … seek out friends/co-workers … search for others … make phone calls/send tweets … finish tasks/turn off computers … wait around for instructions … change shoes … and try to obtain permission to leave ;
  3. Delaying Activities Outside The Fire Building: Once outside the building’s final fire exit, but before moving directly to a place of safety, building occupants/users stop to see what is happening … look for friends/co-workers … look for a phone … do not know where to go … or, within the ‘danger zone’ of the fire building, stop to receive medical attention.

It may seem obvious that Fire Evacuation Routes must also be Accessible (for People with Activity Limitations), which also makes routes much safer for every other building user … and sufficiently wide to accommodate Contraflow (emergency access by firefighters or rescue teams into a building and towards a real fire, while building users are still moving away from the fire and evacuating the building) … a harsh lesson learned from the 2001 WTC 9-11 Attacks and the 2017 Grenfell Tower Fire. Since they are new, strange and unusual for many building designers, and most fire engineers … these aspects of building performance are overlooked in nearly every building.

Practice Evacuations should include exercise of the buddy system ; fire safety fittings, e.g. portable fire extinguishers ; and fire evacuation devices intended for use by people with activity limitations which will require more intensive training.

Colour image showing a range of personal Facilitation / Mobility Aids.  People with Activity Limitations must be allowed, and positively encouraged, to keep these Aids during practice and real fire evacuations.  Prior meaningful consultation (see below) is essential.  Click to enlarge.

Important Note:  During fire emergencies, People with Activity Limitations must be permitted to keep possession of their own personal Facilitation / Mobility Aids.

SOME HUMAN FIRE EVACUATION ISSUES

The actual people who use and occupy buildings are individuals.  They are different from each other, and they each have a different range of abilities (in relation to self-protection, independent evacuation to an external place of safety remote from a fire building, and active participation in a building’s fire emergency management plan), behaviour and manner of perceiving their surroundings.  Two apparently similar people will also show variations in how they react to and behave in any specific situation, particularly a fire emergency.

Ability / Disability is a Continuum – a gentle gradient on which every person functions and acts at different levels due to personal and environmental, i.e. external, factors.

In situations of severe stress, e.g. during a fire emergency in a building, where there is a lack of preparedness for such an event, a lack of familiarity with evacuation routes, lack of reliable evacuation information, lack of competent leadership and clear direction, and the presence of smoke, user/occupant confusion, disorientation and panic will occur.  Standard evacuation movement times will also be non-existent.  In addition, people with activity limitations must then deal with many physical barriers which routinely impede their evacuation from buildings, e.g. fire resisting doorsets which are difficult to open, steps along evacuation routes and at final fire exits.

In the case of people with a mental or cognitive impairment, there is a particular need to encourage, foster and regularly practice the adaptive thinking which will be necessary during evacuation a real fire incident.

People with respiratory health conditions will not be able to enter or pass through smoke.  People with visual impairments will require continuous, linked tactile and/or voice information during the whole process of fire evacuation.  People with psychological impairments, i.e. vertigo and agoraphobia, will be unable to use fire evacuation staircases with glass walls in high-rise buildings.  Because of the stigma still associated with disability in many countries, some users/occupants who will need assistance during a fire emergency will be reluctant to self-identify beforehand.  Other people may not even be able to recognize that they have an activity limitation or a health condition.

Meaningful Consultation with a person known to occupy or use a building, for the purposes of receiving his/her active co-operation and informed consent (involving a personal representative, if necessary), is an essential component of adequate pre-planning and preparation for a fire emergency.

Building Designers, Fire Engineers and Firefighters should be aware of the following human conditions:

Agoraphobia: A fear of open spaces.

Commentary: Agoraphobia is one of the most commonly cited phobic disorders of people seeking psychiatric or psychological treatment. It has a variety of manifestations, e.g. a deep fear of leaving a building, or of being caught alone in some public place. When placed in threatening situations, agoraphobics may experience a panic attack.

Anosognosia: A neurological disorder marked by the inability of a person to recognize that he/she has an activity limitation or a health condition.

Dementia: Any degenerative loss of intellectual capacity, to the extent that normal and occupational activities can no longer be carried out.

Panic: A sudden overwhelming feeling of anxiety, which may be of momentary or prolonged duration.

Panic Attack: A momentary period of intense fear or discomfort, accompanied by various symptoms which may include shortness of breath, dizziness, palpitations, trembling, sweating, nausea, and often a fear by a person that he/she is going mad.

.

.

END

#SFE #GrenfellTowerFire #FireSafety4ALL #NobodyLeftBehind #VulnerableBuildingUsers #PwAL #PwD #NeverStayPut #VulnerablePeople #Firefighters #FFsafety #FFhealth #2019GrenfellRecommendations #SFE #GrenfellTowerFireInquiry #London #FireResistingDoorsets #FireCompartmentation #FireProtection #FireEvacuation #MooreBick #FireEngineering #FireEngineers #IFE #England #RIBA #Design #Management #Construction #HighRiseResidentialBuildings #UDHR #HumanRights #unCRPD #Discrimination #AusterityKills #Justice4Grenfell #Contraflow #LocalFireServices #Skill4Evacuation #Resilience #CoronaVirus #CoVID19 #Panic #SIA

Grenfell Inquiry Recommendations (2) – Fire Emergency Plans !

Previous Posts In This Series …

2019-10-31:  Grenfell Tower Fire Inquiry’s Phase 1 Report – Information

2019-11-11:  Grenfell Inquiry Recommendations (1) – Vulnerable People ?

2019-12-21:  Recapping with regard to Vulnerable Building Users … the Grenfell Inquiry Phase 1 Recommendations are pathetically and disgracefully inadequate !  At a later stage and in order to make amends for this serious error … Inquiry Chairperson, Sir Martin Moore-Bick must direct that Proper Consideration – not just Token Consideration – be given, in Law, to the Fire Safety of Vulnerable Building Users, who include people with activity limitations, children under 5 years of age, frail older people (not ALL older people !), women in late stage pregnancy, people with disabilities, refugees, migrants, the poor, and people who do not understand the local culture or cannot speak the local language … OR, to put it another way and to remove any ambiguity … any person who may be vulnerable in a fire emergency, i.e. those with limited abilities in relation to self-protection, independent evacuation to an external place of safety remote from the building, and active participation in the building’s fire emergency procedures.

Do you care that Vulnerable People also use Your Building ?
People with Activity Limitations.  Click to enlarge.

.

Now, Over 2.5 Years After The Grenfell Tower Fire … London Fire Brigade Commissioner (#LFB), Dany Cotton, has recently stated that she will retire at the end of December 2019.

On 17 December 2019 … The National Inspectorate in Britain for Police and Fire Services (#HMICFRS … www.justiceinspectorates.gov.uk/hmicfrs) published a report into the performance of London Fire Brigade.  Some extracts from that document …

‘ We have concluded there is a long way to go before London Fire Brigade is as efficient as it could be.  We have criticised both the way it uses resources and makes its services affordable now and in future.  In some areas it is wasteful.  While it has made savings, these are not of the level made in other services.

Worryingly, the Brigade is inadequate at getting the right people with the right skills.  It also needs to improve how it promotes the right values and culture, ensuring fairness and promoting diversity as well as managing performance and developing leaders.

The tragic fire at Grenfell Tower in 2017 was one of the biggest challenges London Fire Brigade has ever had to face.  The incident has had a profound effect on how the Brigade now performs.  Although our findings are broadly consistent with those of the Grenfell Tower Inquiry, it must be emphasised that this was an inspection of the Brigade in 2019.  We found that while the Brigade has learned lessons from Grenfell, it has been slow to implement the changes needed.  This is unfortunately typical of the Brigade’s approach to organisational change.’

Title Page of GB’s National Inspectorate (HMICFRS) Report, published on 17 December 2019.

HMICFRS Report on the Performance of London Fire Brigade  (PDF File, 768 Kb)

If Dany Cotton is the only person to go at the end of December 2019, this is very obviously political scapegoating !

Very Quickly … the entire Culture and Value System of London Fire Brigade must change for the better.  And to ensure that this transformation is Immediate and Fully Effective … ALL of Dany Cotton’s Senior Commanders must also go, or be fired … including Dany’s intended replacement, Andy Roe !

In addition … because it is still attempting to defend the criminal ‘Stay Put’ Policy … the National Fire Chiefs Council (#NFCC … www.nationalfirechiefs.org.uk/) in Britain must be held accountable.  Its Chair, Vice Chairs and those Lead Officers with responsibility for fire safety in buildings must ALL be replaced NOW !

.

FIRE  EMERGENCY  MANAGEMENT  PLANNING

The Grenfell Fire Inquiry’s Phase 1 Recommendations were published on 30 October 2019.  Under the initial topics covered … they are far from being comprehensive … they are fragmentary, lack depth and any sort of coherence …

[ Paragraph #33.10 ]  I therefore recommend:

a. that the owner and manager of every high-rise residential building be required by law to provide their local fire and rescue service with information about the design of its external walls together with details of the materials of which they are constructed and to inform the fire and rescue service of any material changes made to them ;

[ Paragraph #33.12 ]  I therefore recommend that the owner and manager of every high-rise residential building be required by law:

a. to provide their local fire and rescue services with up-to-date plans in both paper and electronic form of every floor of the building identifying the location of key fire safety systems ;

b. to ensure that the building contains a premises information box, the contents of which must include a copy of the up-to-date floor plans and information about the nature of any lift intended for use by the fire and rescue services.

I also recommend, insofar as it is not already the case, that all fire and rescue services be equipped to receive and store electronic plans and to make them available to incident commanders and control room managers.

[ Paragraph #33.13 ]  I therefore recommend:

a. that the owner and manager of every high-rise residential building be required by law to carry out regular inspections of any lifts that are designed to be used by firefighters in an emergency and to report the results of such inspections to their local fire and rescue service at monthly intervals ;

b. that the owner and manager of every high-rise residential building be required by law to carry out regular tests of the mechanism which allows firefighters to take control of the lifts and to inform their local fire and rescue service at monthly intervals that they have done so.

[ Paragraph #33.22 ]  I therefore recommend:

a. that the government develop national guidelines for carrying out partial or total evacuations of high-rise residential buildings, such guidelines to include the means of protecting fire exit routes and procedures for evacuating persons who are unable to use the stairs in an emergency, or who may require assistance (such as disabled people, older people and young children) ;

b. that fire and rescue services develop policies for partial and total evacuation of high-rise residential buildings and training to support them ;

c. that the owner and manager of every high-rise residential building be required by law to draw up and keep under regular review evacuation plans, copies of which are to be provided in electronic and paper form to their local fire and rescue service and placed in an information box on the premises ;

d. that all high-rise residential buildings (both those already in existence and those built in the future) be equipped with facilities for use by the fire and rescue services enabling them to send an evacuation signal to the whole or a selected part of the building by means of sounders or similar devices ;

e. that the owner and manager of every high-rise residential building be required by law to prepare personal emergency evacuation plans (PEEP’s) for all residents whose ability to self-evacuate may be compromised (such as persons with reduced mobility or cognition) ;

f. that the owner and manager of every high-rise residential building be required by law to include up-to-date information about persons with reduced mobility and their associated PEEP’s in the premises information box ;

g. that all fire and rescue services be equipped with smoke hoods to assist in the evacuation of occupants through smoke-filled exit routes.

.

Residents in High-Rise Buildings, whether public or private, must no longer wait in vain for a saviour, or to be saved by the ‘system’.  Instead, the time has arrived to become proactive, and to immediately initiate their own comprehensive programmes of Self-Protection In Case Of Fire … which go far beyond the Recommendations in Moore-Bick’s Phase 1 Report.

.

Fire Emergency Management Planning begins very early in the long life cycle of a building.  The following framework should be scaled up or down, depending on the size and extent of a project …

Fire Defence Plan (FDP)

A Fire Defence Plan (#FDP) elaborates the particular fire engineering strategy which has been developed for a specific building at design stage.  It is usually in electronic format and/or hard copy … and comprises fire engineering drawings, descriptive text (including a clear statement of the project’s fire engineering design objectives), a full construction specification (including façade cladding systems), fire safety related product/system information, with supporting calculations and the fire test/approval data which demonstrates their ‘fitness for intended use’.

A Fire Defence Plan must demonstrate a proper consideration for the fire safety, protection and evacuation of all building occupants/users, with a particular and integrated focus on vulnerable building users, especially people with activity limitations.  Refer to Personal Emergency Evacuation Plans (PEEP’s) in my previous post.

In ‘real’ everyday practice, as opposed to academic theorizing … effective fire compartmentation is very difficult to achieve.  Passive/active fire protection measures are never 100% reliable … sometimes nowhere near 100%.  Building management systems are very far from being reliable.  For these reasons, ‘Stay Put’ Policies must be completely avoided !

[ In the specific case of Health Care Facilities, e.g. hospitals, it is highly hazardous to patients and unacceptable with regard to their welfare that they be evacuated during a fire emergency to a place of safety which is remote from the building.  Instead, the optimal fire engineering strategy here is to ‘protect in place’ … which requires a very high level of independently monitored competence, quality and reliability in design, construction, management, operation, and servicing. ]

Fire Defence Plans become ‘live’ during Construction.

A hard copy of the Fire Defence Plan for a building must always be available for inspection on-site.  A copy of the fire defence plan must also be retained at a remote, safe and secure location off-site.

Fire Emergency Planning Committee (FEPC)

Immediately after the completion of construction and occupation of a building, a Fire Emergency Planning Committee (#FEPC) must be established by the building owner(s), in consultation with building occupants/users.  Membership of the FEPC must comprise representatives of the building owner(s), building occupants, and regular users of the building.  The Committee’s task must be to develop, implement and maintain a Fire Emergency Management Plan, consisting of the emergency response procedures and related training and regular practices, which are essential for the effective and efficient management of any fire emergency in the building.  Sufficient resources must be allocated to the FEPC, by the building owner(s), to ensure that it can satisfactorily complete this task.

Fire Emergency Control Room.  Click to enlarge.

The FEPC must ensure that all relevant legislative requirements are met and must examine, if necessary, the need for the appointment of competent, specialist advisors and support.  Special attention must be paid by the FEPC to the fire safety of vulnerable building occupants/users.  The FEPC must establish a Fire Emergency Control Room (#FECR), which must be fitted-out and competently operated – 24/7/365 – in accordance with the Fire Emergency Management Plan.  The FEPC must also appoint a competent Fire Emergency Control Unit Manager.

Fire Emergency Management Plan (FEMP)

The Fire Defence Plan is the basis for, and main component of, a building’s Fire Emergency Management Plan (#FEMP).  This document elaborates the fire emergency response procedures for an occupied building and is produced by the Fire Emergency Control Unit Manager, in liaison with the Local Fire Service.  It contains relevant information about the fire safety preparedness and prevention/protection/recovery measures in the building, and includes the pre-emergency, emergency and post-emergency roles, duties and responsibilities assigned to individuals and, in the case of their absence, nominated deputies.

The Fire Emergency Control Unit Manager liaising with the Local Fire Service.

The objective of a Fire Emergency Management Plan is to ensure that, in the event of a fire emergency, the health and safety of every building occupant/user is protected, including visitors to the building, contractors, and product/service suppliers … and access for, and the safety of, firefighters is assured.  Particular attention must be paid to those occupants with activity limitations.  All Personal Emergency Evacuation Plans (#PEEP’s) must be fully integrated into the overall Fire Emergency Management Plan for the building.  Documented procedures must accurately reflect reality, and real behaviour, in the building.

The Fire Emergency Management Plan must include the procedures, chosen methods of warning to be used during a fire emergency, management control and co-ordination during the fire emergency, communications between each member of the Fire Emergency Control Unit and the building’s occupants/users and with the Fire Service Incident Commander at the scene, emergency response equipment in the building, evacuation actions, arrangements for occupants/users with activity limitations, first-aid personnel, evacuation by lift/elevator fire evacuation assemblies, escalators, travellators and staircases, use and fitting-out of areas of rescue assistance (including visual monitoring and the provision of smoke hoods), lift/elevator lobbies (including visual monitoring and provision of smoke hoods) and floors of temporary refuge, up-to-date emergency contact details, etc.

The Fire Emergency Management Plan must always be available for inspection, in hard copy format, at a convenient location in the building.  A copy must be provided to all building occupants, as they request, in hard copy, electronic and/or alternative formats.  A further copy of the Fire Emergency Management Plan must be provided to the Local Fire Service, as they request, in hard copy and/or electronic formats.

To ensure its effectiveness, the Fire Emergency Management Plan must be regularly practiced at least every three months, tested and reviewed.  If necessary, e.g. in the case of large/complex building types or existing buildings having suspect levels of fire safety, the establishment of an on-site, permanent, competent/specialist Fire Emergency First Response Team (#FEFRT) must be considered.

Fire Emergency Control Unit (FECU)

The Fire Emergency Control Unit (#FECU) must be established by the Fire Emergency Planning Committee to implement, manage, and recommend improvements to the Fire Emergency Management Plan.

In the event of a Fire Emergency, instructions given by the Fire Emergency Control Unit Manager, or his/her Deputy, must take precedence over normal management structures and procedures in the building; and it shall be his/her duty to inform the Local Fire Service, immediately upon their arrival at the scene, about the number/locations of people still in the building, and the number/locations of vulnerable people who may need to be rescued.

Other members of the Fire Emergency Control Unit must accompany occupants/users as they evacuate to place(s) of safety, remote from the building.  Once there, a head count must immediately be taken by those members – now the Person in Charge at a place of safety – to establish the following:

  • That everybody is present, and that nobody has been left behind ;
  • That everybody is uninjured … or if anybody is injured, what appropriate Medical Aid is rendered and/or summoned.

Communications during a fire emergency between all of the interested parties involved can be fraught with difficulty … lack of discipline will cause misunderstandings and confusion … signal strengths may suffer interference because of the building’s construction.  If necessary, Repeater Units must be installed in the building at any signal ‘drop-zones’ … and the development of a Fire Emergency Management Communications ‘App’, for use on FECU/occupant/user smartphones, must also be considered.

The Fire Emergency Control Unit Manager must prepare for the swift and orderly transfer of the Fire Emergency Control Room and its personnel to a safe location off-site, in the unlikely event of a severe fire emergency in the building.

Fire Safety Training & Regular Practice Evacuations

The objective of fire safety training and regular practice evacuations, which are held at least every 3 months, is to ensure that everybody in the building is skilled for evacuation during a fire incident, using safe accessible routes to an external place/places of safety which is/are remote from the building.

Place(s) of Safety.  Click to enlarge.

Fire safety training and regular practice evacuations must be conducted by the Fire Emergency Control Unit Manager for all building occupants and regular visitors to the building, including FECU personnel.  Fire safety training material used, e.g. brochures, hand0outs and fact sheets, must be site-specific, appropriate to an individual’s role and responsibilities, and easily assimilated, i.e. can be comprehended by everyone, including people with activity limitations and those who are illiterate or may use different languages.

A programme of site-specific practice fire evacuations must be developed, in collaboration with the Local Fire Service, by the Fire Emergency Control Unit Manager.

Skill:  The ability of a person – resulting from proper training and sufficient regular practice – to carry out complex, well-organized patterns of behaviour efficiently and adaptively, in order to achieve some end or goal.

Routine Fire Safety/Evacuation Inspections & Maintenance

The Fire Emergency Control Unit Manager must ensure that all fire safety and evacuation related aspects of the Fire Emergency Management Plan, including systems, products and fittings, are routinely inspected, tested and maintained/serviced.  Any deficiencies must be reported to the Fire Emergency Planning Committee at the completion of an inspection and/or test, and must be rectified as soon as it is reasonably practicable.  Records of all activities must be regularly updated and safely/securely stored in the building, with a duplicate copy provided to the Local Fire Service.

Fire Evacuation Performance Indicators (Metrics)

Performance indicators/metrics must be formulated by the Fire Emergency Control Unit Manager in order to evaluate the effectiveness of the fire emergency response procedures in the building.  During practice evacuations, the time between warning communications and first occupant/user movement, the time taken for evacuation to an external place/places of safety remote from the building, the evacuation routes chosen by occupants/users, and the time required to identify everyone who participated in the practice evacuation at the place/places of safety, including those occupants/users who did not participate, must all be recorded.

The Local Fire Service has two functions: a) to suppress and control a fire in the building, and to confirm extinguishment ;  and b) to rescue people in the building who are injured, trapped, or otherwise unable to independently evacuate, e.g. people waiting in areas of rescue assistance and lift/elevator lobbies.  In addition, therefore, the time taken for the first fire service vehicle to arrive on-site and, more importantly, the time taken for the fire services to arrive in sufficient strength to deal effectively with a fire emergency in the building must be recorded.  In the event that either or both of these times are inordinately long, an on-site specialist Fire Emergency First Response Team (FEFRT) must be established by the Fire Emergency Planning Committee.  The FEFRT must work under the control of, and report directly to, the Fire Emergency Control Unit Manager.

‘Contraflow’ movement in Building Circulation Routes.  Click to enlarge.

During the process of evaluation, generous allowance must be made for contraflow circulation during a real fire incident, i.e. emergency access by firefighters into a building and towards a fire, while building occupants/users are still moving away from the fire and evacuating the building.

The Fire Emergency Control Unit Manager must report, in full, the recorded performance and his/her evaluation of practice evacuations to the Fire Emergency Planning Committee.

.

Addendum 2020-04-14:  For business application … the National Fire Protection Association (#NFPA) issued a very useful Emergency Preparedness Checklist in September 2018 …… which also covers Business Continuity and Recovery

NFPA Emergency Preparedness Checklist  (English, Download PDF File, 153 Kb)

NFPA Lista De Verificación De Preparación Para La Emergencia  (Spanish, Download PDF File, 158 Kb)

.

.

END

#GrenfellTowerFire #FireSafety4ALL #NobodyLeftBehind #VulnerableBuildingUsers #PwAL #PwD #NeverStayPut #VulnerablePeople #Firefighters #FFsafety #FFhealth #2019GrenfellRecommendations #SFE #GrenfellTowerFireInquiry #LondonFireBrigade #DanyCotton #AndyRoe #FireResistingDoorsets #FireCompartmentation #FireProtection #FireEvacuation #MooreBick #FireEngineering #FireEngineers #IFE #England #Design #Management #Construction #HighRiseResidentialBuildings #UDHR #HumanRights #Discrimination #AusterityKills #Justice4Grenfell #Contraflow #LocalFireService #Skill4Evacuation

England’s 2017 Grenfell Tower Fire – Never Again Elsewhere ??

2018-06-12 …

As we approach the First Anniversary of the Grenfell Tower Fire Tragedy, in England, on 14 June … a few days ago, on 4 June 2018, the first batch of Grenfell Expert Witness Reports were uploaded (https://www.bbc.com/news/uk-44356660) to the Grenfell Tower Inquiry Website (https://www.grenfelltowerinquiry.org.uk/) for public view.

At this time, in London … multiple, fragmented investigations are taking place into the actual fire incident … the role of the Local Authority, and building management … those involved in the refurbishment (‘tarting up’) design and construction … the fire services, particularly their ‘Stay Put’ Policy and how it adversely impacted on vulnerable Tower occupants during the emergency … and the highly flawed regulatory model of Building and Fire Codes with light-touch Control, which is still operating in England.  One of Murphy’s Laws immediately springs to mind with regard to the intended ineffectiveness of this overly-complex process !

Colour photograph showing Grenfell Tower in the background … undergoing an almost complete ‘cover-up’ … with, in the foreground, mementos of the Fire Tragedy fixed to railings by local residents. Click to enlarge. Photograph taken by CJ Walsh. 2018-04-29.

Many other countries have adopted some or all of this modern English regulatory model which, after the repeal of an older Bye-Law format, has been shaped by political expediency, cost-effectiveness and general ineptitude … with little or no adaptation to local conditions in the adopting jurisdictions.  Ireland adopted this model with some, but not a lot, of adaptation.

Fire Safety In Ireland ?

On 6 June 2018 … while that investigative activity was hitting the headlines in England … Minister Eoghan Murphy, T.D., Ireland’s Minister for Housing, Planning and Local Government, quietly published the Report: ‘Fire Safety in Ireland’http://www.housing.gov.ie/local-government/fire-and-emergency-management/fire-safety/eoghan-murphy-publishes-report-fire … by a High-Level Task Force within his Department’s National Directorate for Fire and Emergency Management, after serious concerns and fears had been expressed in the public media that a similar fire tragedy might also occur in this jurisdiction.

To be crystal clear … this Report is a Bureaucratic Whitewash … an insult to the Public !  Nice sounding technical ‘blarney’ camouflages a failure to deal directly with critical issues, and answer concerns … while other important issues are avoided altogether.

.May 2018 – Ireland’s Department of Housing, Planning & Local Government Report

Fire Safety In Ireland    (PDF File, 2.55 MB)

Expanding on my comments in the Interview with Barry Lenihan, on RTE Radio 1’s Drive Time early evening news programme on Friday (2018-06-08) …

A.  Initially, Irish Local Authorities were requested to carry out a preliminary survey to identify all buildings of more than six storeys, or 18m in height.  Specifically, they were asked to identify those buildings which had an external cladding system which might be a cause for concern.

This height threshold of six storeys/18m is arbitrary … an external cladding system can be just as much a cause for concern in a building which is lower.  Imagine discarded cigarette butts or a rubbish fire at the base of such a system … and the resulting speed of fire spread and development across a building façade !

B.  The highly flawed regulatory model of Building and Fire Codes, with light-touch Control, which resulted in the Grenfell Tower Fire Tragedy … we also have.  Wake up and smell the coffee Ireland !

At the beginning of the 1990’s, when Ireland had been persuaded by the European Commission to finally introduce legal, national building regulations having a functional format … our National Authority Having Jurisdiction, in desperation, grabbed the then Approved Documents for England & Wales … brought them back to Ireland, put Irish covers on them, and originally called them ‘Technical Documents’ … but, after seeing a tiny ray of inspiring light, later changed their title to the more accurate ‘Technical Guidance Documents’ !  This hunger for adopting all things English which are fire safety related continues to this day … with a similar, ongoing division of Technical Guidance Document B: ‘Fire Safety’ into 2 Separate Volumes.

This may have been a convenient response under pressure … but it has been very short-sighted.  It has impeded the growth of a comprehensive and coherent philosophy on Safe, Inclusive, Age-Friendly, Resilient, Sustainable Planning, Design and Construction Codes/Controls which is suited to an Irish context and responsible local needs (not desires!).

C.  Everywhere … this Report has a lot – too much – to say about Fire Risk Assessment !  After the Grenfell Tower Fire, however, Fire Risk Assessments must only be carried out by competent persons … and the process of Fire Risk Assessment, itself, must be radically improved !  And of course, prior to any Risk Assessment … a proper Fire Hazard Appraisal must be carried out.

D.  To accurately present Fire Safety Trends in Ireland … it is not enough to furnish reliable fire fatality statistics.  It is also necessary to produce reliable fire injury statistics … and reliable information on direct/indirect socio-economic losses.

E.  The quality of fire safety related construction on Irish Building Sites continues to be very poor and problematic.  Fire Compartmentation is nowhere near being adequately – never mind acceptably – reliable !  And during the last few years we have had quite a number of close-calls concerning fire incidents in medium-rise residential buildings.

F.  Fire Evacuation for people with activity limitations is still handled atrociously in our current building regulations.  This is ironic because, on 20 March 2018 last, Ireland had to be dragged screaming to ratify the U.N. 2006 Convention on the Rights of Persons with Disabilities (CRPD) !

.

Positive Progress By Another Path !

1.  Abandon the outdated English functional requirements in THEIR building regulations … and adopt a far better, more up-to-date body of functional requirements which is already on the Irish Statute Books … Annex I of the European Union’s Construction Products Regulation 305/2011.  And because there are important horizontal linkages between requirements … immediately finish the ridiculous current separation between Fire Safety requirements and all of the other requirements.  And yes … new Technical Guidance Documents will have to be drafted.

.Regulation (EU) No 305/2011 of the European Parliament and of the Council, of 9 March 2011, laying down harmonized conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

EU Regulation 305/2011 – Construction Products.  See Annex I

(PDF File, 998 Kb)

2.  Yes … ‘Persons Having Control’ of buildings have responsibilities with regard to fire safety.  But that is only one side of the coin !  National and Local Authorities Having Jurisdiction have greater responsibilities.

If we are at all serious about Consumer Protection … bad, inadequate, faulty construction must be prevented beforehand … it is too late, too costly and, in many cases, too impractical to correct afterwards.  Self Regulation by building design professions and construction organizations is NO Regulation !  Stringent, independent technical control inspections must be carried out on all projects by Building Control personnel … which used to happen in Dublin City/County and Cork City/County prior to the introduction of legal building regulations in the early 1990’s … and, depending on complexity, must also be carried out at critical stages during the construction process.

Building Control Sections in all Local Authorities must be properly resourced with competent personnel, equipment, training and support infrastructure.

Inspections concerning compliance with all functional requirements in the building regulations, including fire safety, must be carried out only by Building Control Personnel.  Chief Fire Officers must not be allowed to manage or be involved in any aspect of Building Control.  On the same project … a Disability Access Certificate Application and a Fire Safety Certificate Application must be inter-linked and overlap sufficiently, showing no gaps in compliance.  Inspections must be carried out in connection with all Certificate Applications.  Building Control personnel must satisfy themselves that actual construction at least matches, if not improves upon, what is shown in design documentation.

Building Control Inspection Reports must be made available for public view.

3.  Firefighters are NOT a disposable Social Asset !  National and Local Authorities Having Jurisdiction … and some Chief Fire Officers … must begin to understand this fundamental truth !

Fire Services in all Local Authorities must each be properly resourced according to local needs … with competent personnel, equipment, training and support infrastructure.  Shared provision of resources looks very neat on paper but, in practice, works very badly.  Refer to the Grenfell Tower Fire and London Fire Brigade having to borrow firefighting equipment from other Fire Services.

After the 2015 Tianjin Regional Fire Devastation, in China, and the 2001 WTC Attacks on 9-11, in New York City … front line firefighters must be supported by Specialist Hazard Appraisal and Structural Engineering Units.

For Firefighter Safety in buildings and to quickly find people with activity limitations waiting in Areas of Rescue Assistance and/or other survivors in different locations … a portable and reliable Thermal Imaging Camera is an essential piece of every firefighter’s equipment.

And Firefighter Safety begins with good building design.  In all but the most simple building types, Circulation Routes must be designed for Contraflow … people moving away from a fire in a building and towards safety while, at the same time, heavily equipped firefighters are entering the building and moving towards the fire.

Colour photograph showing Contraflow on a building staircase … people moving down a staircase away from a fire and towards safety while, at the same time, heavily equipped firefighters are moving up the staircase towards the fire. Click to enlarge.

There is no place for ‘Stay Put’ Policies in Irish Residential Buildings of any height.

.

Ireland’s 2017 Oireachtas Report: ‘Safe As Houses’ …

December 2017 – Houses of the Oireachtas – Joint Committee on Housing, Planning & Local Government

Safe As Houses ?  A Report On Building Standards, Building Controls & Consumer Protection

(PDF File, 1.01 MB)

This was a good effort by our public representatives … but they missed core issues !

.

After The Grenfell Tower Fire !

Further to my last Blog, dated 2017-10-10 …

The 2017 Fire in England was not an extraordinary fire.  Since the beginning of this decade, we continue to see a series of such fires: South Korea (2010) – UAE & France (2012) – Chechnya (2013) -Australia (2014) – UAE, Azerbaijan & UAE again (2015) – UAE (2016) – UAE & Russia (2017) – Turkey (2018).

With regard to Command & Control of Large Scale Emergencies … English AHJ’s should have paid attention to the 2005 & 2008 U.S. National Institute of Science & Technology (NIST) Recommendations following the 9-11 WTC Buildings 1, 2 & 7 Collapses.

The Fire Safety Objectives in current Building & Fire Codes/Regulations are very limited.  In Ireland, this is clearly stated in Technical Guidance Document B …

‘ Building Regulations are made for specific purposes.  Part B of the Second Schedule to the Building Regulations is therefore primarily concerned with the health, safety and welfare of persons.  The fire safety measures outlined in this guidance document are intended for the protection of life from fire.’

Only insofar as it is necessary to protect the lives of able-bodied building users/occupants … is there a concern for property protection.

There is only inadequate, token concern for the protection of people with disabilities.

Client organizations, facility managers, building designers, construction organizations … and journalists … must fully comprehend these limits.

In the photograph below … look closely at the External Firefighting Operations at the bottom of the Tower.  There are limits to what can be achieved from outside a building !

Colour photograph showing the developed fire at Grenfell Tower, in London. At the bottom of the Tower, external firefighting operations can be viewed. Click to enlarge.

.

  • A Fire Suppression System (Water Sprinklers/Mist/Hybrid) is an essential Fire Protection Measure in ALL Medium and High-Rise Residential Buildings … which include Apartment Blocks, Hotels, Hostels, Student Accommodation & Social Housing, i.e. ANYWHERE there is a Sleeping Hazard.

 

  • A Reliable and Credible Fire Detection & Warning System is an essential Fire Protection Measure in ALL Buildings … and must be capable, under the control of Building Management, of transmitting warnings in many formats, i.e. Audible + Visual + Multi-Lingual Voice + Tactile.

 

  • Fire Evacuation Routes in Buildings must be designed for CONTRAFLOW … people moving away from a fire and towards safety while, at the same time, heavily equipped firefighters are entering the building and moving towards the fire.

 

  • Good Fire Evacuation Route Design is INTUITIVE and OBVIOUS.  In many buildings, however, this is not always the reality.  Effective Fire Evacuation Signage … comprising high-level signage, low-level signage, with both supplemented by photoluminescence … must be installed in ALL Buildings.

 

  • For the purpose of protecting Vulnerable Building Users in Fire Emergencies, ALL Lifts/Elevators in Buildings must be capable of being used for Evacuation.

 

  • Fire Risk Assessments must NO LONGER be carried out by people WITHOUT COMPETENCE in Fire Engineering AND Building Design & Construction … and the Fire Risk Assessment Process itself must be thoroughly re-examined and upgraded.

.

.

END

.

Sustainable Fire Engineering – 2016 End Of Year Report !

2016-12-28:  Happy New Year to One and All !

SUSTAINABLE FIRE ENGINEERING

‘ The creative, person-centred and ethical Fire Engineering response, in resilient built form and smart systems, to the concept of Sustainable Human and Social Development – the many aspects of which must receive balanced and synchronous consideration.’

.

Organized by FireOx International (Ireland, Italy & Turkey), in joint collaboration with Glasgow Caledonian University’s School of Engineering & Built Environment (Scotland) … and having a widely multi-disciplinary attendance from the U.S.A., Hong Kong SAR (China), Spain, Finland, Scotland, Norway, Germany, England, The Netherlands and Ireland … SFE 2016 DUBLIN was a unique, and very successful, two-day gathering within the International Fire Engineering and Fire Service Communities.

The organizers are very grateful to our Supporters: CIB, FIDIC, iiSBE, and the UNEP’s Sustainable Buildings and Climate Initiative … and our Sponsor: Rockwool International.

SUSTAINABLE FIRE ENGINEERING fulfils a Critical Role in the realization of a Safe, Resilient and Sustainable Built Environment 4 ALL !

SUSTAINABLE FIRE ENGINEERING facilitates Positive Progress in implementing the United Nation’s 2030 Sustainable Development Agenda, which incorporates 17 Sustainable Development Goals and 169 Performance Targets !

SUSTAINABLE FIRE ENGINEERING fast-tracks Proper Compliance with the 7 Basic Performance Requirements – functional, fully integrated and indivisible – in Annex I of European Union Construction Products Regulation 305/2011 !

.

A NECESSARY & LONG OVERDUE TRANSFORMATION !

A Building is a permanent construction, complying with basic performance requirements and capable of being easily adapted … comprising structure, essential electronic, information and communication technologies (EICT’s), and fabric (non-structure) … having a minimum life cycle of 100 years … and providing habitable, functional and flexible interior spaces for people to use.

Building Users have a wide and varied range of abilities and behaviours … some having discernible health conditions and/or physical, mental, cognitive, psychological impairments … while others, e.g. young children, women in the later stages of pregnancy and frail older people, are also particularly vulnerable in user-hostile, inaccessible environments.  Not everyone will self-identify as having an activity limitation because of the high level of social stigma associated with ‘disability’.  Building designers and fire engineers must accept that building users have rights and responsible needs ;  the real individual and group fire safety requirements of vulnerable building users must be given proper consideration by both design disciplines, working collaboratively together.

Real Building Users have a wide and varied range of abilities … and during a Fire Evacuation, they will NOT behave like ‘marbles or liquid in a computer model’ !  People with Disabilities, on their own, account for approximately 20% of populations in developed countries … more in developing and the least developed countries.

NOBODY LEFT BEHIND !

‘Fire Safety for ALL’ in Buildings – Not Just for SOME – A Priority Theme of Sustainable Fire Engineering

Current Revision of International Standard ISO 21542 (2011): ‘Building Construction – Accessibility & Usability of the Built Environment’

.

Following the savage 2008 Mumbai Hive Attack in India, and the more recent 2015 and 2016 Attacks in Europe, i.e. Paris, Brussels, Istanbul and Berlin … it is entirely wrong to assume that the main and/or only targets will be specific high-risk buildings types, i.e. Tall/High-Rise, Iconic, Innovative and Critical Function Buildings (refer to 2005 & 2008 NIST WTC 9-11 Recommendations).  All buildings and adjoining/adjacent public spaces must be carefully assessed for the risk of direct or collateral involvement in an Extreme Man-Made Event.

It is a fundamental principle of reliable and resilient structural engineering that horizontal and vertical structural members/elements of construction are robustly connected together.  All buildings must, therefore, be capable of resisting Disproportionate Damage.  The restriction of this requirement, within some jurisdictions, to buildings of more than five storeys in height is purely arbitrary, cannot be substantiated technically … and ethically, must be disregarded.

Fire-Induced Progressive Damage is distinguished from Disproportionate Damage – a related but different structural concept – by the mode of damage initiation, not the final condition of building failure.  This phenomenon is poorly understood.  But, unless it is impeded, or resisted, by building design … Fire-Induced Progressive Damage will result in Disproportionate Damage … and may lead to a Collapse Level Event (CLE), which is entirely unacceptable to the general population of any community or society.  All buildings must, therefore, be capable of resisting Fire-Induced Progressive Damage.

All buildings must also be carefully assessed for the risk of involvement in a Severe Natural Event, e.g. earthquakes, floods, landslides, typhoons and tsunamis.

In all of the above Risk Assessments … the minimum Return Period (also known as Recurrence Interval or Repeat Interval) must never be less than 100 years.

Reacting to surging energy, environmental and planetary capacity pressures … with accelerating climate change … Sustainable Buildings are now presenting society with an innovative and exciting re-interpretation of how a building is designed, constructed and functions … an approach which is leaving the International Fire Engineering and Fire Service Communities far behind in its wake, struggling to keep up.

Colour ‘infographic’ showing the design features of 1 Bligh Street, Sydney CBD, Australia … ‘tall’/skyscraper commercial office building, completed in 2011 … designed by Ingenhoven Architects (Germany) and Architectus (Australia).  Can Fire Engineers understand this new design approach … and then collaborate, actively and creatively, within the Project Design Team ?
Black and white plan drawing of 1 Bligh Street (Level 26), Sydney CBD, Australia … a ‘sustainable’ office building … BUT … Effective ‘Fire Safety for All’ in this building ?  Has Firefighter Safety been considered ??  Property Protection ???  Business Continuity ????  The very harmful Environmental Impacts of Fire ?????

Passive and Active Fire Protection Measures, together with Building Management Systems (whether human and/or intelligent), are never 100% reliable.  Society must depend, therefore, on firefighters to fill this reliability ‘gap’ … and to enter buildings on fire in order to search for remaining or trapped building users.  This is in addition to their regular firefighting function.  Therefore, there is a strong ethical obligation on building designers, including fire engineers, to properly consider Firefighter Safety … should a fire incident occur at any time during the life cycle of a building.

Structural Serviceability, Fire Resistance Performance and ‘Fire Safety for All’ in a building must, therefore, be related directly to the local Fire Service Support Infrastructure … particularly in developing and the least developed countries.  AND … Fire Codes and Standards must always be adapted to a local context !

Colour photograph showing knotted sheets hanging from high-level windows which were used for ‘escape’ by guests … clearly indicating a catastrophic failure of fire protection measures and management within the building. Fire and smoke spread quickly throughout the multi-storey hotel, resulting in 12 dead, and over 100 injured (approximately 1/3 critically).
Colour photograph showing a guest rescue by ladder.  Notice the condition of the ladder and firefighter protection.  Fire safety in a building must be related directly to local Fire Service Support Infrastructure … particularly in developing and the least developed countries.

The fire safety objectives of current Fire Codes and Standards are limited, usually flawed … and will rarely satisfy the real needs of clients/client organizations, or properly protect society.  Fire code compliance, in isolation from other aspects of building performance, will involve a consideration of only a fraction of the issues discussed above.  There is once again, therefore, a strong ethical obligation on building designers, including fire engineers, to clearly differentiate between the limited fire safety objectives in Fire Codes and Standards … and Project-Specific Fire Engineering Design Objectives … and to explain these differences to a Client/Client Organization.  Facility Managers must also explain these differences directly to an Organization’s Senior Management … and directly inform the Organization’s Board of Directors … as appropriate.SFE Mission:  To ensure that there is an effective level of Fire Safety for ALL – not just for SOME – in the Built Environment … to dramatically reduce all direct and indirect fire losses in the Human Environment … and to protect the Natural Environment.

4 Key SFE Concepts:  Reality – Reliability – Redundancy – Resilience !

SFE Design Solutions:  Are …

  • Adapted to Local Context & Heritage ;
  • Reliability-Based ;
  • Person-Centred ;   and
  • Resilient.

SFE SUBSIDIARY OBJECTIVES

  1. To transform Conventional Fire Engineering, as practiced today, into an ethical and fully professional Sustainable Design Discipline which is fit for purpose in the 21st Century … meaning … that fire engineers can participate actively and collaboratively in the sustainable design process, and can respond creatively with sustainable fire engineering design solutions which result in Effective Fire Safety for All in a Safe, Resilient and Sustainable Built Environment.
  2. To bring together today’s disparate sectors within the International Fire Engineering (and Science) Community … to encourage better communication between each, and trans-disciplinary collaboration between all.
  3. To initiate discussion and foster mutual understanding between the International Sustainable Development, Climate Change and Urban Resilience Communities … and the International Fire Engineering and Fire Service Communities.

SFE DELIVERABLES

1.  2016 Dublin Code of Ethics: Design, Engineering, Construction & Operation of a Safe, Resilient & Sustainable Built Environment for All.  Download from: http://www.sustainable-firengineering.ie/sfe2016dublin/wp-content/uploads/2016/09/2016_Dublin-Code-of-Ethics.pdf

The realization of a Safe, Inclusive, Resilient & Sustainable Built Environment demands a concerted, collaborative, very creative and widely trans-disciplinary effort at national, local, regional and international levels across the whole planet – Our Common Home.  The informed operation of appropriate legislation, administrative procedures, performance monitoring and targeting, and incentives/disincentives, at all of these levels, will facilitate initial progress towards this objective … but not the quantity, quality or speed of progress necessary.  Our time is running out !

This Code of Ethics applies … for those who subscribe to its values … to policy and decision makers, and the many different individuals and organizations directly and indirectly involved in the design, engineering, construction, and operation (management and maintenance) of a Safe, Resilient & Sustainable Built Environment for All.

The Purpose of this Code of Ethics is to guide the work of competent individuals and organizations in a context where incomplete or inadequate legislation, administrative procedures and incentives/disincentives exist … but, more importantly, where they do not exist at all … and, amid much confusion and obfuscation of the terms, to ensure that implementation is authentically ‘sustainable’, and reliably ‘safe’ and ‘resilient’ for every person in the receiving community, society or culture … before it is too late !

2.  Sustainable Fire Engineering Network … Join the LinkedIn SFE Group at https://www.linkedin.com/groups/8390667.  Interested Individuals and Organizations are all very welcome.

And … Like the Facebook SFE Page at https://www.facebook.com/sfe2016/

3.  New CIB W14: ‘Fire Safety’ Research Working Group VI Reflection Document: ‘Sustainable Fire Engineering Design, Construction & Operation’, which will establish a framework for the future development of Sustainable Fire Engineering.

Preparation of this Document will soon begin, and the following issues will be explored:

  • Conceptual Framework for Sustainable Fire Engineering (SFE), with a necessary accompanying Generic SFE Terminology ;
  • Strategy for Future SFE Development ;
  • Implementation of 2005 & 2008 NIST WTC 9-11 Recommendations ;
  • Fresh, New SFE Research Agenda ;
  • Resilient Implementation of SFE Research Agenda.

4.  SFE Websitehttp://www.sfe-fire.eu

5.  SFE Twitter Accounts … @sfe2016dublin … and … @firesafety4all

.

.

END

BS 9999:2008 & BS 8300:2009 – Sleepwalking into Problems ?

2009-06-14:  Ireland has no national standards or codes of practice of its own covering Building Accessibility or Fire Safety in Buildings.  Instead, many people and organizations in this country will just switch to automatic pilot and  – without thinking or questioning – adopt the following two standards of another jurisdiction as the default Irish National Standards …

British Standard BS 9999:2008 – Code of Practice for Fire Safety in the Design, Management and Use of Buildings … was published on 31 October 2008.

British Standard BS 8300:2009 – Design of Buildings and Their Approaches to Meet the Needs of Disabled People.  This Code of Practice was published on 28 February 2009.

If Ireland does not quickly open its eyes … we will be sleep walking into a very problematic legal environment, as far as building accessibility and fire safety in buildings is concerned.

1.   An Immediate Challenge 

A Sub-Group (established at a meeting of the NSAI Accessibility-for-All Standards Consultative Committee WG1 held on Tuesday 2009-05-19) was tasked with developing a common position, suitable for application in Ireland and compatible with European Technical Harmonization, on the following issues:

  • Clear Width of Internal & External Door Openings ;
  • Turning Circles for Occupied Wheelchairs ;
  • Car Parking Spaces ;
  • Fire Safety Issues.

A series of coherent proposals will be presented to the next NSAI AASCC WG1 Meeting, on Friday 19th June 2009 … and, given the absence of Irish National Standards, it will also be suggested how these proposals may be confirmed as best current practice here.

.

2.   Overview of BS 8300:2009 & BS 9999:2008

During the development of the Draft ISO Accessibility-for-All Standard, it has been unanimously agreed that Accessibility encompasses the full range of activity related to buildings: to approach, enter, use, egress from and evacuate a building independently, in an equitable and dignified manner (Introduction, 2nd Paragraph, Page 5).  ‘Egress’ under normal, ambient conditions is distinguished from ‘Evacuation’ in the event of a fire emergency.  Use of the word ‘Escape’ is discouraged in any circumstance.  For the first time, fire safety texts have been fully incorporated into the main body of the Draft ISO Standard.

Accessibility within the British Standards Institution (BSI), on the other hand, is still segregated between BS 8300:2009 – approach, entry and use and BS 9999:2008 – fire evacuation.  Conflicts and gaps in content naturally result from such a configuration, which can now be seen as outdated and fundamentally flawed.

This configuration has been replicated, in Irish Building Regulations, with the separate scopes of Part M / Technical Guidance Document M and Part B / Technical Guidance Document B.  Integration between these 2 Technical Guidance Documents is very poor.  In practice, fire safety for people with activity limitations is widely disregarded within the process of Fire Safety Certification in Ireland.

2.1  BS 8300:2009

BSI has arrogantly gone on a solo run, and decided to deviate from some very widely accepted concepts of accessibility, e.g. ‘clear width’ of a door opening (discussed in more detail later).  The ‘Ergonomic Research’ supporting door opening forces of 30 N is at complete variance with earlier research in Britain and must, therefore, be strongly questioned.  Perhaps, it is the case that the Fire Services in England & Wales re-asserted their authority, supported by reference to European Fire Product Standards with little if any input from the European Disability Sector, and insisted on a ‘definite’, i.e. high, closing force being exerted on the door leaves in fire resisting doorsets.

2.2  BS 9999:2008

People with disabilities have a right, recognized in international law after 3rd May 2008, to equal opportunity and non-discrimination in matters of building fire safety, protection and evacuation.  A minimum response to Article 11 (Situations of Risk) in the 2006 United Nations Convention on the Rights of Persons with Disabilities is required, therefore, from fire regulators and code writers.  Such a response is absent in British Standard BS 9999:2008.

A close examination of the fire safety texts relating to ‘disability’ in BS 9999:2008 shows that they have not been properly integrated into the ‘mainstream’ content.  In fact, much of the content from the replaced BS 5588:Part 8 has just been grafted onto BS 9999, with very little change or alteration from the first version of Part 8 published in 1988 !

Compare Figure G.1 on Page 360 of BS 9999:2008 … with … Figure 4 on Page 8 of BS 5588:Part 8:1988 … both are exactly the same …

Black and white drawing showing both a token and an inadequate 'area of rescue assistance' in BS 9999:2008 - exactly as shown in the first version of BS 5588:Part 8 published back in 1988 !
Black and white drawing showing both a token and an inadequate ‘area of rescue assistance’ in BS 9999:2008 – exactly as shown in the first version of BS 5588:Part 8 published back in 1988 ! Click to enlarge.

Two Critical Observations in relation to the ‘area of rescue assistance’ shown above:

    –  This drawing in BS 9999:2008 is in direct conflict with the text located directly above it … ‘where the wheelchair space is within a protected stairway, access to the wheelchair space should not obstruct the flow of persons escaping’ ;

but, more importantly …

   –  In BS 9999:2008, fire safety for people with activity limitations receives treatment which is superficial and merely token.  Many times in relation to buildings generally, it is stated in Annex G.1, Page 359 …

‘A refuge needs to be of sufficient size both to accommodate a wheelchair and to allow the user to manoeuvre into the wheelchair space without undue difficulty.’

‘ In most premises, it is considered reasonable to have refuges of a size where each one is able to accommodate one wheelchair user.  Where it is reasonably foreseeable that the proportion of disabled users in a building will be relatively high, or where the use of the premises is likely to result in groups of wheelchair users being present (e.g. some types of sporting, entertainment, transport or public assembly buildings), consideration should be given to increasing the size and/or number of refuges accordingly.’

‘ NOTE 3   Managers of sporting or other venues where a number of disabled people might be present are advised not to restrict the number of disabled people who can be admitted to that venue on the grounds of the size of refuges, since some disabled people who use mobility aids such as a wheelchair will be able to self-evacuate in the case of a real fire.’

and again in Annex G.2.2 on Page 367 …

‘Where it is reasonably foreseeable that the refuges will be used by more than one user (e.g. some types of sporting, entertainment, transport or public assembly buildings), … ‘

.

Within such an inadequate and token context, it is understandable that an unduly heavy reliance is placed on the practice of developing Personal Emergency Evacuation Plans (PEEPS) for individuals with activity limitations.  See Paragraph #46.7a) on Page 248, which states …

‘ By taking into account the individual needs of a person when preparing a PEEP, management will be able to make any reasonable adjustments to the premises or procedures that are necessary.’

These Plans are flawed and discriminatory because they are:

   –  person specific ;  and

   –  location specific ;

… with the underlying assumption in the text being that, beyond the specified location(s), the building is not properly accessible, i.e. does not meet the functional requirements of Parts B & M in the Building Regulations for England & Wales – or, in the case of Ireland, Parts B & M of our Building Regulations.

.

There are silly technical errors in BS 9999:2008, e.g. in Annex G.2.3 on Page 368, it states …

‘Unless a different order has been agreed with the fire authority, evacuation should normally be in the following order:

1)     the fire floor ;

2)     the floor immediately above the fire floor ;  [This should read ‘the floors immediately above and immediately below the fire floor’ !]

3)     other floors above the fire floor starting at the top storey ;

4)     all remaining floors.’

.

A Technical Term is used in BS 9999:2008 – Place of Ultimate Safety – which complicates the already widely accepted term: ‘Place of Safety’.  The definition provided for the British Term in Section 3: Terms & Definitions (#3.84, Page 17) is so vague that it is of no practical use to fire engineering designers, building managers or building users.

.

3.   Comments:  i) Clear Width of Door Openings

Paragraph #6.4.1, on Page 36 of BS 8300:2009 introduces a new understanding of ‘clear width’ for door openings, which is illustrated in Figure 11 (Page 37) … and also a new term ‘effective clear width’.

The new understanding of ‘clear width’ is a complete departure from the standard understanding, widely accepted throughout the world, which is shown in the bottom left hand drawing of Figure 11.

The new term ‘effective clear width’ will complicate the already difficult concept of ‘clear width’.  Wasn’t the ‘clear width’ of a door opening always supposed to be ‘effective’, i.e. properly permit circulation for wheelchair users ?

However, the issue raised in the top right hand drawing of Figure 11 is valid …

Colour photograph showing the Final Fire Exit from a building (somewhere in Ireland). The 'clear width' of the door opening is seriously compromised - the door leaf cannot be fully opened and the panic bar reduces the 'clear width' still more.
Colour photograph showing the Final Fire Exit from a building (somewhere in Ireland). The ‘clear width’ of the door opening is seriously compromised – the door leaf cannot be fully opened and the panic bar reduces the ‘clear width’ still more. Click to enlarge.

Solution:  Retain the current international/European/national understanding of ‘clear width’ for door openings in Ireland … but include text, with supporting drawings, in Revised Technical Guidance Documents B & M to ensure that there is no encroachment on that ‘clear width’ caused by protruding door leaf ironmongery or, more importantly, where the door leaf itself cannot be fully opened to 90o-100o.

.

4.   Comments:  i) Clear Width of Door Openings in Existing Buildings

Table 2, on Page 37 of BS 8300:2009, permits the ‘clear width’ for door openings in existing buildings to be reduced significantly below 800mm.

If buildings of historical, architectural and cultural importance are properly identified, and proper allowance is made for these specific building types in Revised Technical Guidance Documents B & M … there is no need to permit a general reduction in the ‘clear width’ for door openings in existing buildings.

Solution:  Clearly indicate in the Revised Technical Guidance Document M that the last ‘Existing Buildings’ Column on the right of Table 2 in BS 8300 should be disregarded.

.

5.   Comments:  ii) Turning Circles for Occupied Wheelchairs

Down through the years, it has been just possible to communicate the concept of the ‘wheelchair turning circle’ to building designers and urban planners … whether it be the older 1.5m diameter circle or the newer 1.8m diameter circle.

The new Figures and Tables in Annexes C.3 and C.4 of BS 8300:2009 will be difficult to communicate … and may be a complication too far ?

.

6.   Comments:  iv) Fire Safety Issues

Colour photograph showing people trapped at the top of one of the WTC Towers. This Tower collapsed soon afterwards.
Colour photograph showing people trapped at the top of one of the WTC Towers. This Tower collapsed soon afterwards. Click to enlarge.

The Recommendations contained in the 2005 & 2008 National Institute of Standards & Technology (USA) Reports on the WTC 9-11 Incident in New York provide an invaluable and essential empirical basis for the practice of effective fire engineering design in today’s built environment.

The first of these two reports has special relevance for NSAI AASCC WG1 because the typical problems encountered by people with activity limitations during a ‘real’ building fire incident have been highlighted by NIST and closely investigated.  As a result, three important fire engineering keywords have been re-stated with strong emphasis: ‘reality’ – ‘reliability’ – ‘redundancy’.  And, a new key phrase in relation to way finding during evacuation has been introduced to the everyday practice of fire engineering design: ‘intuitive and obvious’.

The 2005 NIST Report, particularly, must be given proper consideration during the development of any reputable fire safety related standard or code of practice for the following reasons:

   –  at the time of the ‘real’ fire incident, approximately 8% of building users were people with disabilities, with 6% having mobility impairments ;  [The percentage of ‘building users with activity limitations’ exceeded the 8% quoted above.]

   –  NIST found that the average surviving occupant in the buildings descended stairwells at about half the slowest speed previously measured for non-emergency/test evacuations.  This raises a serious question over the use of standard movement times in fire engineering design calculations for evacuation ;

   –  NIST strongly recommended that fire-protected and structurally hardened lifts (elevators) should be installed in buildings to facilitate the evacuation of building users with disabilities, and to improve emergency response activities by providing timely emergency access to firefighters ;  [In Ireland, building designers have already adopted this approach by constructing cores of reinforced concrete … even in the absence of European/national standards.]

   –  it was recommended that evacuation routes should have consistent layouts, and be ‘intuitive and obvious’ for all building users, including visitors who may be unfamiliar with the building, during evacuations ;

   –  NIST recommended that staircase capacity and stair discharge door widths should be adequate to accommodate contraflow in circulation spaces, i.e. the simultaneous emergency access by firefighters into a building and towards a fire, while building users are still moving away from the fire and evacuating the building.  This has implications for the minimum clear width of all fire evacuation staircases.  Wider staircases facilitate the assisted evacuation and rescue of people with disabilities.

.

No consideration was given in BS 9999:2008, however, to any of the Recommendations contained in the 2005 & 2008 NIST Reports … there is not even a mention of either Report in the Bibliography (Pages 423-429).

   –  For such an important national standard in Europe – BS 9999:2008 – there is no understanding demonstrated of the Fundamental Functional Requirement for Public Safety in Buildings …

Buildings shall remain structurally stable and serviceable …

1.  while people are waiting in ‘Areas of Rescue Assistance’ ;  and

2.  until all of these people can be rescued by Firefighters and can reach a ‘Place of Safety’, which is remote from a fire building – with an assurance of individual health, safety & welfare for the people involved ;

   –  There is a reference to ‘normal movement times’ which are used to calculate evacuation times in Mobility-Impaired People (Paragraph #46.2, Page 247), even though it was found by NIST that the average surviving occupant in the WTC Towers descended stairwells at about half the slowest speed previously measured for non-emergency evacuations.  In a ‘real’ fire incident, there is no such thing as ‘normal’ or ‘standard’ evacuation movement times, and the idea that any building must be clear of occupants within a very short timeframe, e.g. 2.5-3.5 minutes, is ludicrous ;

   –  In the sensitive area of the Resistance to Damage of Enclosing and Separating Partitions (Paragraph #21.2.5 on Page 101) surrounding Firefighting Shafts, it is still permissible in BS 9999:2008 to use non-robust construction, e.g. lightweight plasterboard.  Fire-Induced Progressive Collapse is not discussed in the BS 9999 … and neither is Disproportionate Collapse, which is one of the functional requirements – A3 – in Part A of the Building Regulations for England & Wales (and Ireland !) ;

   –  Although in Wheelchair Users (Paragraph #46.3 on Page 247), it is stated …

‘It should be noted that it can take as many as four people to use an evacuation chair safely and effectively.’

… the dimensions for the minimum width of staircases in Width of Escape Stairs (Table 14 on Page 88) and Firefighting Stairs (Paragraph #21.3.2 on Page 106) disregard the guidance given on Page 247 … and ignore the minimum clear staircase width (1.5m) required to safely assist the evacuation of a person in a manual wheelchair …

Black and white photograph (US FEMA 2002) showing the correct way to assist the fire evacuation of a wheelchair user in an evacuation staircase ... one person at each side, with another person behind.
Black and white photograph (US FEMA 2002) showing the correct way to assist the fire evacuation of a wheelchair user in an evacuation staircase … one person at each side, with another person behind.

And … for some unexplained reason, handrails are permitted to intrude into the ‘clear width’ of a firefighting staircase in BS 9999:2008 (Paragraph #21.3.2, Page 106).

Please note well … this method (shown below) of assisting the evacuation of a person in a manual wheelchair is NOT correct.  It is not possible to support any weight by holding the foot rests on a manual wheelchair, or by grasping the wheelchair by the front wheels …

Black & white sketch showing how definitely NOT to assist the fire evacuation of a wheelchair user in an evacuation staircase.
Black & white sketch showing how definitely NOT to assist the fire evacuation of a wheelchair user in an evacuation staircase.

Manual handling of occupied wheelchairs in a fire evacuation staircase, even with adequate training for everyone directly and indirectly involved, is hazardous for the person in the wheelchair and those people – minimum three – giving assistance.

The weight of an average unoccupied powered wheelchair, alone, makes manual handling impractical.  All lifts (elevators) in new buildings should, therefore, be capable of being used for evacuation in a fire situation.  Lifts (elevators) in existing buildings, when being replaced or undergoing a major overhaul, should then be made capable of use for this purpose.

.

Contraflow Circulation, i.e. the simultaneous emergency access by firefighters into a building and towards a fire, while building users are still moving away from the fire and evacuating the building, has not been considered at all in BS 9999:2008.

A clear staircase width of 1.5m provides sufficient space for a mobile person to evacuate (700 mm) and a heavily protected and equipped firefighter to simultaneously move in the opposite direction (800 mm) …

Colour drawing, with photograph insets, showing the symbiotic relationship between Contraflow Circulation and Proper Assisted Evacuation in a building.
Colour drawing, with photograph insets, showing the symbiotic relationship between Contraflow Circulation and Proper Assisted Evacuation in a building. Click to enlarge.

Human Behaviour in Fires should have been discussed in far more detail in BS 9999:2008 … but wasn’t.  It is important for fire engineering designers to understand that the ‘real’ people who use ‘real’ buildings every day of every week, in all parts of the world, have widely differing ranges of human abilities and activity limitations … they are different from each other, and they will react differently in a fire emergency.

Building users need to be Skilled for Evacuation to a place, or places, of safety remote from a fire building.  In the case of people with a mental or cognitive impairment, there is a particular need to encourage, foster and regularly practice the adaptive thinking which will be necessary during a ‘real’ fire evacuation.

Meaningful Consultation with every person known to occupy or use a building, for the purposes of receiving his/her active co-operation and obtaining his/her informed consent (involving a personal representative, if necessary), is an essential component of adequate pre-planning and preparation for a fire emergency.

Adequate Warning of a fire incident in a building should be communicated well in advance of the time when it is necessary to act and should continue for the full duration of the incident.  Warnings should be informative, and easily assimilated in a form (e.g. oral, written, braille) and language understood by the people using the building.

Panic attacks, during evacuation in a ‘real’ fire incident, exist.  The 2005 National Building Code of India refers extensively to this issue.

Solution:  To resolve the technical inadequacies, inconsistencies and content gaps in BS 9999:2008 … it will be necessary to revise Technical Guidance Document B in Ireland.  Fire safety, protection and evacuation from buildings for people with disabilities must be comprehensively included in the process of Fire Safety Certification.

.

7.        Conclusions – BS 9999:2008 & BS 8300:2009

There are many gaps and conflicts between these two British Standards, principally because … they are two separate standards … drafted by two different Technical Committees within the British Standards Institution (BSI).

Because of its deviation from widely accepted concepts of accessibility and its tortuous use of terminology, BS 8003:2009 will have an adverse impact on the practice of Accessibility Design in Ireland … and has already complicated the development of the ISO Accessibility-for-All Standard (DIS ISO 21542).

Arrogance within BSI is not the only reason for such deviations.  Distorting the European Union Single Market, for the purpose of introducing technical barriers to trade, is common in Britain … refer to the ‘deemed-to-satisfy’ status of the Approved Documents in the Building Regulations for England & Wales … and the Fire Protection Association’s ‘LPC Sprinkler Rules’.

Input from the Disability Sector during the drafting of BS 9999:2008 was not at all sufficient to ensure that there was a meaningful consideration of the problems encountered by people with activity limitations during a ‘real’ building fire incident.  The necessary range of available and effective fire engineering solutions has not, therefore, been presented in the standard.

In addition … the complete and abject failure to consider the important Recommendations contained in the 2005 & 2008 National Institute of Standards & Technology (USA) Reports on the WTC 9-11 Incident in New York was an inexcusable and unforgivable technical oversight.

The result is a crassly inadequate, discriminatory and deeply flawed national fire safety standard in Great Britain & Northern Ireland.  BS 9999:2008 became obsolete on the very day of its publication !

.

.

Postscript

Please refer to our 1999 Submission to the Department of the Environment & Local Government, in Dublin, concerning the use of British Standard BS 5588:Part 8 in Ireland …

        http://www.sustainable-design.ie/arch/submissions.htm

Following this Submission, our understanding is that an ‘Internal’ Working Party was established within the Department.  However, the Working Party never reported.  No proper response to this Submission has ever been received from the Minister or the Department.

.

On 29th November 2006, similar and very polite comments were sent directly to the British Standards Institution (BSI) by e-mail.  Receipt of this e-mail was never acknowledged by anyone in BSI.

The contents of the e-mail were ignored.

.

.

END

Enhanced by Zemanta

Fire Evacuation of People with Disabilities – Reality Bites ?

2009-03-10:   Regarding Seán’s Comment, dated 2009-03-06.

 

Yes, the guidance provided in Technical Guidance Document B (Ireland) is inadequate … and the same can equally be said of Approved Document B (England & Wales).

 

And yes, you will find only partial answers in British Standard BS 9999, even though it was only published on 31st October 2008 last.

 

Access Consultants in Ireland and Great Britain rarely deal with any matters relating to fire safety in buildings.

 

 

 

Please allow me, therefore, to fill in some gaps for you.  The following guidance is suitable for application in any European country …

 

People with Activity Limitations (2001 WHO ICF) experience many difficulties when attempting to independently evacuate a fire building.  However, our reasoning is very simple.  If we can get things right for the most vulnerable building users, we get them right for everyone else also.

 

 

The Target Destination … whether evacuation is independent, assisted by other building users or accomplished by means of firefighter rescue … is a ‘Place of Safety’.  This term is not well defined in legislation or codes.

 

Building User ‘Place of Safety’:

Any location beyond a perimeter which is [100] metres from the fire building or a distance of [10] times the height of such building, whichever is the greater … and … where necessary and effective medical care and attention can be provided, or organized, within one hour of injury … and … where people can be identified.

 

Where there is a Risk of Explosion … multiply the numbers in square brackets above by 4 (at least !).

 

 

 

All Fire Evacuation Routes – inside and outside a building – should comply with Accessibility Design Criteria.  This is an entirely alien concept to many Fire Prevention Officers in Local Authorities, and Fire Consultants !

 

Panic Attacks, during evacuation in a ‘real’ fire incident, exist.

 

Standard Movement Times, during evacuation in a ‘real’ fire incident, do not exist.

 

 

 

People should be able to reach an ‘Area of Rescue Assistance’ inside a building with ease.  In practice, few people understand what the word ‘refuge’ means (as in … refuge point, refuge area, area of refuge, etc).  As a result, these spaces are regularly misused and/or abused in buildings.  And there is great difficulty translating a word into other languages which, in English, can have so many meanings.  In Italian fire safety legislation, for example, ‘refuge’ has been translated as ‘spazio calmo’.  How crazy is that ?

 

So … what is an ‘Area of Rescue Assistance’ ?

A building space directly adjoining, and visible from, a main vertical evacuation route – robustly and reliably protected from heat, smoke and flame during and after a fire – where people may temporarily wait with confidence for further information, instructions, and/or rescue assistance, without obstructing or interfering with the evacuation travel of other building users.

 

 

This is a notional Area of Rescue Assistance …

 

A Clear Evacuation Width of 1.5 metres on the Evacuation Staircase facilitates ‘contraflow’ in a fire emergency (shown on the lower flight of stairs), i.e. emergency access by firefighters entering a building and moving towards a fire, while building users are moving away from the fire and evacuating the building … as well as allowing sufficient space to safely carry an occupied wheelchair down the staircase (shown on the upper flight of stairs).

 

Drawing showing a notional Area of Rescue Assistance in a Building. Click to enlarge. Based on a design by CJ Walsh. Drawn by S Ginnerup, Denmark.
Drawing showing a notional Area of Rescue Assistance in a Building. Click to enlarge. Based on a design by CJ Walsh. Drawn by S Ginnerup, Denmark.

 

 

Evacuation Skills & Self-Protection from Fire in Buildings …

A ‘skill’ is the ability of a person – resulting from adequate training and regular practice – to carry out complex, well-organized patterns of behaviour efficiently and adaptively, in order to achieve some end or goal.

 

Building users should be skilled for evacuation to a ‘place of safety’, and test/drill/non-emergency evacuations should be carried out sufficiently often to equip building users with that skill.  Consideration should be given to practicing evacuation once every month or, at most, every two months; once a year is inadequate.  In the case of people with a mental or cognitive impairment, there is a particular need to encourage, foster and regularly practice the adaptive thinking which will be necessary during a ‘real’ fire incident.

 

Since Fire Protection Measures and Human Management Systems are never 100% reliable … it is necessary for frail older people and building users with disabilities to be familiar with necessary guidelines for self-protection in the event of a fire emergency.

 

 

Assisted Evacuation & Rescue Techniques …

Firefighters have two functions:

         fighting fires ;  and

         rescuing people who are trapped in buildings, or for some reason, cannot independently evacuate a building which is on fire.

 

People with disabilities are participating more and more, and in ever increasing numbers, in mainstream society.  It is necessary, particularly for firefighters, to become skilled in how best to rescue a person with a disability from a building, using procedures and equipment which will not cause further harm or injury to that person.

 

Manual handling of occupied wheelchairs in a fire evacuation staircase, even with adequate training for everyone directly and indirectly involved, is hazardous for the person in the wheelchair and those people – minimum three – giving assistance.

 

Generally … Powered Wheelchairs are too heavy for manual handling in any situation.

 

For these reasons, all lifts/elevators in new buildings should be capable of being used for fire evacuation.  Lifts/elevators in existing buildings, when being replaced or undergoing major overhaul, should then be made capable of being used for fire evacuation.

 

Local Fire Authorities should ensure that they possess the necessary equipment to rescue people with a wide range of impairments, and that specialized rescue equipment is regularly serviced and maintained.  Every Fire Authority should have an ‘accessible’ and ‘reliable’ Emergency Call System which is available, at all times, to the public within its functional area.

 

It is essential that every Firefighter is fully aware of this important public safety issue, and is regularly trained in the necessary rescue procedures involving people with a wide range of impairments.

 

.

 

.

 

END

Enhanced by Zemanta