Executive Summary

The Global Wildfire Challenge & Learning To Live With Fire

2019-04-05:  Let us imagine, for a moment, that we are in another dimension … The Twilight Zone …

… and that this is a Positive Energy Building, set in a sprawling, diverse, interconnected and flourishing Woodland … an idealized scene … the Sustainability Idyll

Colour photograph proposing, as the Sustainability Idyll, a Positive Energy Building in the midst of a diverse, interconnected and flourishing Woodland.  Climate change is increasing the risk of more frequent and intense Wildfires, threatening this idealized scene.  Click to enlarge.

But … is it … ??

What percentage of the world’s population would ever, ever have the opportunity to live this way ???

And … lurking all around this beautiful scene, is an inherent and growing threat to life, property, and those trees and shrubs … Wildfires !

.

The Aim of Sustainable Fire Engineering (SFE) is to dramatically reduce direct and indirect fire losses in the Human Environment (including the social, built, economic, virtual, and institutional environments) … to protect the Natural Environment … and, within Buildings, to ensure that there is an effective level of Fire Safety for All Users/Occupants, not just for Some, during the full building life cycle.

[ Human Environment:  Anywhere there is, or has been, an intrusion by a human being in the Natural Environment.]

So … how do we reduce direct and indirect fire losses in the Human Environment … and improve its Resilience ?

.

A recent publication provides a good platform to begin this serious conversation …

December 2018 … the International Union of Forest Research Organizations (IUFRO), which is based in Vienna, published Occasional Paper No. 32: ‘GLOBAL FIRE CHALLENGES IN A WARMING WORLD – Summary Note of a Global Expert Workshop on Fire and Climate Change’ …

IUFRO OC 32 – Cover Page. Click to enlarge.

GLOBAL FIRE CHALLENGES IN A WARMING WORLD – Summary Note of a Global Expert Workshop on Fire and Climate Change   (PDF File, 4.72MB)

Executive Summary

Today, catastrophic wildfires are increasingly common across the globe.  Recent disasters have attracted media attention and strengthened the perception of wildfires as ‘bad’ events, a plague worsened by climate change that has yet to be eradicated.  Although it is true that fire has a destructive potential, the reality of global fire activity depicts a much more complex picture in which fire can be a useful, if not necessary, tool for food security and the preservation of cultural landscapes, as well as a an integral element of many ecosystems and their biodiversity.

Global fire activity is shaped by diverse social, economic, and natural drivers influencing the fire environment.  The culminating complexity of these factors defines, in turn, the likelihood of a landscape to burn and the potential positive or negative outcomes for communities and ecosystems that can result from a blaze.  Although many regions remain understudied, the effects of ongoing climate change associated with other planetary changes are already visible, transforming fire activity in ways that are not well understood but are likely to be dramatic, with potential dire consequences for nature, and society in case of adaptation failure.

Based on the limited available statistics, there is a growing trend in the cost of wildfires.  In addition to human lives that are lost to flames or smoke and the billions of euros imputable to firefighting and insurance coverage, the growing interest in costs linked to healthcare, business stability, or the provision of ecosystem services such as drinking-water indicates negative economic consequences impacting countries’ GDP and social stability.  Attempts to evaluate the future costs of wildfire disasters point at a worsening situation, yet the list of possible social and economic effects is incomplete and the magnitude of envisaged impacts is conservative.

Notwithstanding the difficulties inherent to global climate modelling, there is a scientific consensus on the future increase in the frequency of fire-conducive weather associated with drier ecosystems, a mix that will eventually result in more frequent and intense fire activity.  When combined with an ever-growing world population and unsustainable land uses, the conditions leading to fire disaster will only be intensified.  Although fire governance has historically advocated for fire suppression, a No Fire motto is not an option anymore in the new fire reality.  Current policies aiming at total fire suppression have been shown to be detrimental and are therefore outdated.  The key to wildfire disaster risk reduction in a changing world now lies in learning to live with fire.

Investments in international co-operation, integrated management, local community involvement, cutting-edge technologies, and long-term data collection are critically needed to ensure the future of fire disaster risk mitigation.  Moreover, future land development policies must prioritize the protection and the restoration of natural and cultural landscapes that have been degraded by the inappropriate use of fire or, conversely, by historical fire exclusion; keeping a place for fire in forest resource management and landscape restoration has been shown to be a cost-effective and efficient solution to reduce fire hazard.

Overall, synthesis of globally available scientific evidence revealed the following key issues for landscape management and governance:

  • Climate change, with longer, hotter, and drier fire seasons, in combination with other environmental changes linked to population growth and unsustainable land-use practices, is contributing to extreme wildfire events that exceed existing fire management capacities. The world is entering a ‘new reality’ that demands new approaches to fire governance.
  • Fire is an inherent feature of the Earth System and many ecosystems, including their fauna, are dependent on it for their long-term survival; nevertheless, ongoing changes in global fire activity in terms of location, intensity, severity, and frequency will have immense costs for biodiversity, ecosystem services, human well-being and livelihoods, and national economies – to extents that have yet to be evaluated. Investment in social, economic, and environmental monitoring is therefore urgent, especially in under-studied regions.
  • Integrated fire risk reduction is key to adapting to ongoing changes in global fire risk. Future sustainable fire risk mitigation demands integrated region-specific approaches based on a clear understanding of fires in context, population awareness and preparedness, fire surveillance and early-warning systems, adaptive suppression strategies, fire-regime restoration, landscape-scale fuel management, changes to many land use practices, and active restoration of landscapes.
  • Engagement with local communities, land-owners, businesses and public stakeholders – via multiple tiers of governance – is crucial to restore and maintain landscapes that are biodiverse and functional, respectful of local cultures and identities, economically productive, and above all, fire-resilient.
  • People have historically achieved sustainable co-existence with flammable ecosystems and have often used fire as a land-management tool, thereby shaping many modern and long-standing landscapes around the world. Traditional fire knowledge is thus key to adapting to local changes in fire activity, using known techniques for the reduction of dangerous fuel loads, prescribed burning and sustainable landscape management practices.
  • Building adaptive capacity to confront fires must be based on knowledge of the natural and cultural roles of fire, how they have shaped our modern landscapes, and their importance in the long-term functioning of socio-ecological systems. Further developments in land-system science, geospatial technologies, and computer modelling will enhance our understanding of the long-term ecological and socio-economic drivers of fire through the widespread collection and distribution of harmonized fire data at the global level.  However, creating and sharing such knowledge requires national and international investments in scientific and operational fire science programmes.
  • Catastrophic fires are undeniably part of our future. Current scientific estimates are conservative, meaning that changes in fire activity might be worse than anticipated.  We have to act now to mitigate catastrophic fires and limit the occurrence of disastrous situations.  Given disparities but also similarities in the levels of fire risk around the world, and the capacities to manage it, knowledge and technology transfers through international cooperation will be a paramount factor in learning to live with fire.

This Occasional Paper is the result of a large collaborative effort by fire scientists and practitioners who believe that learning to co-exist with changing fire activity is not only possible but necessary if we, as a global society, are to adapt to climate change and keep our natural and cultural landscapes healthy, resilient, and safe for the next generations.  The work presented hereafter was developed during, and as follow-up to, the Global Expert Workshop on Fire and Climate Change hosted in Vienna, Austria, on 2-4 July 2018.  It stresses the diversity and the complexity of the global fire situation, a situation that is evolving, positively or negatively, in unknown proportions due to global environmental changes — with climate change being the most acknowledged manifestation.

Conclusion – Learning To Live With Fire

We live on a flammable planet; although not everything is meant to burn, fire cannot be eliminated.  Ongoing global climate change combined with other planetary changes is leading to more frequent and more extreme fires exposing vulnerable societies, economies, and ecosystems to disaster situations.  The recognition of fire activity as a worsening hazard threatening human security is the necessary first step towards international co-operation for the mitigation of disaster risk situations in fire-prone areas.

However, we are not defenceless.  Fire scientists in many regions of the world have been developing successful strategies and tools based on cutting-edge technologies for several years.  Those are now mature enough to be up-scaled and adapted to other geographic contexts as part of national fire management frameworks.  Additionally, integrating existing and future scientific knowledge on climate change and changing fire regimes, and systematically collecting long-term data on current and past fire uses will foster better informed decisions, models and enhanced efforts towards wildfire disaster risk reduction, as well as contribute to the development of sustainable Anthropocene fire regimes.

We hope this paper will be a catalyst for a paradigm shift, so fires are not seen as an enemy to fight but as natural and necessary phenomena, as well as a useful and necessary tool that can often help protect people and nature.  It is paramount to revise, fund, and fulfil future management, research, and governance needs if we are, as world citizens, to trigger a societal change that will help us better live with fires.

The information and insights contained in this Occasional Paper connect together to promote the use of several existing solutions to the problem: defining national fire risk reduction frameworks, collecting and analyzing relevant traditional knowledge and biophysical fire data, investing in fire detection and prediction technologies, involving and preparing stakeholders, and improving fire use and landscape management in ways that help control the fuel load and the spread of fire, while limiting GHG emissions and protecting the communities and the landscapes they live in and often depend on.

The Status Quo is no longer an option; it is time to make integrated fire management the rule rather than the exception.

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Post-9/11 & Post-Mumbai Fire Engineering – What Future ?

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

2011-11-25:  NIST WTC Recommendations 12-15 > Improved Active ProtectionGROUP 4.  Improved Active Fire Protection – Recommendations 12, 13, 14 & 15

2011-11-30:  NIST Recommendations 16-20 > Improved People EvacuationGROUP 5.  Improved Building Evacuation – Recommendations 16, 17, 18, 19 & 20

2011-12-04:  NIST WTC Recommendations 21-24 > Improved FirefightingGROUP 6.  Improved Emergency Response – Recommendations 21, 22, 23 & 24

2011-12-07:  NIST WTC Recommendations 25-28 > Improved PracticesGROUP 7.  Improved Procedures and Practices – Recommendations 25, 26, 27 & 28

2011-12-08:  NIST WTC Recommendations 29-30 > Improved Fire EducationGROUP 8.  Education and Training – Recommendations 29 & 30 (out of 30)

.

Colour image showing 'The Cloud' Residential Tower Project, in Seoul (South Korea) ... which will be completed in 2015. Design by MVRDV Architects, The Netherlands. Click to enlarge.

Colour image showing 'The Cloud' Residential Tower Project, in Seoul (South Korea) ... which will be completed in 2015. Design by MVRDV Architects, The Netherlands. Click to enlarge.

.

2011-12-15:  You know what is coming soon … so Merry Christmas & Happy New Year to One and All !!

.

  1.     There were 2 Important Reasons for undertaking this Series of Posts …

(a)       The General Public, and particularly Client Organizations, should be facilitated in directly accessing the core content of the 2005 NIST WTC Recommendations.  Up to now, many people have found this to be a daunting task.  More importantly, I also wanted to clearly show that implementation of the Recommendations is still proceeding far too slowly … and that today, many significant aspects of these Recommendations remain unimplemented.  Furthermore, in the case of some recent key national standards, e.g. British Standard BS 9999, which was published in 2008 … the NIST Recommendations were entirely ignored.

As a golden rule … National Building Codes/Regulations and National Standards … cannot, should not, and must not … be applied without informed thought and many questions, on the part of a building designer !

(b)       With the benefit of hindsight, and our practical experience in FireOx International … I also wanted to add a necessary 2011 Technical Commentary to the NIST Recommendations … highlighting some of the radical implications, and some of the limitations, of these Recommendations … in the hope of initiating a much-needed and long overdue international discussion on the subject.

Colour photograph showing the Taipei 101 Tower, in Taiwan ... which was completed in 2004. Designed by C.Y. Lee & Partners Architects/Planners, Taiwan. Click to enlarge.

Colour photograph showing the Taipei 101 Tower, in Taiwan ... which was completed in 2004. Designed by C.Y. Lee & Partners Architects/Planners, Taiwan. Click to enlarge.

” Architecture is the language of a culture.”

” A living building is the information space where life can be found.  Life exists within the space.  The information of space is then the information of life.  Space is the body of the building.  The building is therefore the space, the information, and the life.”

C.Y. Lee & Partners Architects/Planners, Taiwan

[ This is a local dialect of familiar Architectural Language.  However, the new multi-aspect language of Sustainable Design is fast evolving.  In order to perform as an effective and creative member of a Trans-Disciplinary Design & Construction Team … can Fire Engineers quickly learn to communicate on these wavelengths ??   Evidence to date suggests not ! ]

.

  2.     ‘Climate Change’ & ‘Energy Stability’ – Relentless Driving Forces for Sustainable Design !

Not only is Sustainable Fire Engineering inevitable … it must be !   And not at some distant point in the future … but now … yesterday !!   There is such a build-up of pressure on Spatial Planners and Building Designers to respond quickly, creatively, intuitively and appropriately to the relentless driving forces of Climate Change (including climate change mitigation, adaptation, and severe weather resilience) and Energy Stability (including energy efficiency and conservation) … that there is no other option for the International Fire Science and Engineering Community but to adapt.  Adapt and evolve … or become irrelevant !!

And one more interesting thought to digest … ‘Green’ is not the answer.  ‘Green’ looks at only one aspect of Sustainable Human & Social Development … the Environment.  This is a blinkered, short-sighted, simplistic and ill-conceived approach to realizing the complex goal of a Safe and Sustainable Built Environment.  ‘Green’ is ‘Sustainability’ for innocent children !!

Colour image showing the Shanghai Tower Project, in China ... which will be completed in 2014. Design by Gensler Architects & Planners, USA. Click to enlarge.

Colour image showing the Shanghai Tower Project, in China ... which will be completed in 2014. Design by Gensler Architects & Planners, USA. Click to enlarge.

.

  (a)      Organization for Economic Co-Operation & Development (OECD) – 2012’s Environmental Outlook to 2050

Extract from Pre-Release Climate Change Chapter, November 2011 …

Climate change presents a global systemic risk to society.  It threatens the basic elements of life for all people: access to water, food production, health, use of land, and physical and natural capital.  Inadequate attention to climate change could have significant social consequences for human wellbeing, hamper economic growth and heighten the risk of abrupt and large-scale changes to our climatic and ecological systems.  The significant economic damage could equate to a permanent loss in average per capita world consumption of more than 14% (Stern, 2006).  Some poor countries would be likely to suffer particularly severely.  This chapter demonstrates how avoiding these economic, social and environmental costs will require effective policies to shift economies onto low-carbon and climate-resilient growth paths.’

  (b)      U.N. World Meteorological Organization (WMO) Greenhouse Gas Bulletin No.7, November 2011

Executive Summary …

The latest analysis of observations from the WMO Global Atmosphere Watch (GAW) Programme shows that the globally averaged mixing ratios of Carbon Dioxide (CO2), Methane (CH4) and Nitrous Oxide (N2O) reached new highs in 2010, with CO2 at 389.0 parts per million (ppm), CH4 at 1808 parts per billion (ppb) and N2O at 323.2 ppb.  These values are greater than those in pre-industrial times (before 1750) by 39%, 158% and 20%, respectively.  Atmospheric increases of CO2 and N2O from 2009 to 2010 are consistent with recent years, but they are higher than both those observed from 2008 to 2009 and those averaged over the past 10 years.  Atmospheric CH4 continues to increase, consistent with the past three years.  The U.S. National Oceanic & Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2010 radiative forcing by long-lived Greenhouse Gases (GHG’s) increased by 29%, with CO2 accounting for nearly 80% of this increase.  Radiative forcing of N2O exceeded that of CFC-12, making N2O the third most important long-lived Greenhouse Gas.

  (c)      International Energy Agency (IEA) – World Energy Outlook, November 2011

Extract from Executive Summary …

There are few signs that the urgently needed change in direction in global energy trends is underway.  Although the recovery in the world economy since 2009 has been uneven, and future economic prospects remain uncertain, global primary energy demand rebounded by a remarkable 5% in 2010, pushing CO2 emissions to a new high.  Subsidies that encourage wasteful consumption of fossil fuels jumped to over $400 billion.  The number of people without access to electricity remained unacceptably high at 1.3 Billion, around 20% of the world’s population.  Despite the priority in many countries to increase energy efficiency, global energy intensity worsened for the second straight year.  Against this unpromising background, events such as those at the Fukushima Daiichi Nuclear Power Plant and the turmoil in parts of the Middle East and North Africa (MENA) have cast doubts on the reliability of energy supply, while concerns about sovereign financial integrity have shifted the focus of government attention away from energy policy and limited their means of policy intervention, boding ill for agreed global climate change objectives.’

Colour image showing the One World Trade Center Project, in New York City (USA) ... which will be completed in 2013. Design by Skidmore Owings & Merrill, Architects/Planners, USA. Click to enlarge.

Colour image showing the One World Trade Center Project, in New York City (USA) ... which will be completed in 2013. Design by Skidmore Owings & Merrill, Architects/Planners, USA. Click to enlarge.

[ Not just in the case of Tall, Super-Tall and Mega-Tall Buildings … but the many, many Other Building Types in the Built Environment … are Building Designers implementing the 2005 & 2008 NIST WTC Recommendations … without waiting for Building and Fire Codes/Regulations and Standards to be properly revised and updated ??   Evidence to date suggests not ! ]

.

  3.     Separate Dilemmas for Client Organizations and Building Designers …

As discussed earlier in this Series … the Fire Safety Objectives of Building and Fire Codes/Regulations are limited to:

  • The protection of building users/occupants ;   and
  • The protection of property … BUT only insofar as that is relevant to the protection of the users/occupants ;

… because the function of Building and Fire Codes is to protect Society.  Well, that is supposed to be true !   Unfortunately, not all Codes/Regulations are adequate or up-to-date … as we have been observing here in these posts.

.

Just taking the Taipei 101 Tower as an example, I have very recently sent out three genuine, bona fide e-mail messages from our practice …

2011-12-08

Toshiba Elevator & Building Systems Corporation (TELC), Japan.

To Whom It May Concern …

Knowing that your organization was involved in the Taipei 101 Project … we have been examining your WebSite very carefully.  However, some important information was missing from there.

For our International Work … we would like to receive technical information on the Use of Elevators for Fire Evacuation in Buildings … which we understand is actually happening in the Taipei Tower, since it was completed in 2004.

The Universal Design approach must also be integrated into any New Elevators.

Can you help us ?

C.J. Walsh

[2012-01-10 … No reply yet !]

.

2011-12-12

Mr. Thomas Z. Scarangello P.E. – Chairman & CEO, Thornton Tomasetti Structural Engineers, New York.

Dear Thomas,

Knowing that your organization was involved in the structural design of the Taipei 101 Tower, which was completed in 2004 … and in the on-going design of many other iconic tall, super-tall and mega-tall buildings around the world … we have been examining your Company Brochures and WebSite very carefully.  However, some essential information is missing.

As you are certainly aware … implementation of the 2005 & 2008 National Institute of Standards & Technology (NIST) Recommendations on the Collapse of WTC Buildings 1, 2 & 7, in New York, on 11 September 2001 … is still proceeding at a snail’s pace, i.e. very slowly.  Today, many significant aspects of NIST’s Recommendations remain unimplemented.

For our International Work … we would like to understand how you have responded directly to the NIST Recommendations … and incorporated the necessary additional modifications into your current structural fire engineering designs.

Many thanks for your kind attention.  In anticipation of your prompt and detailed response …

C.J. Walsh

[2012-01-10 … No reply yet !]

.

2011-12-14

Mr. C.Y. Lee & Mr. C.P. Wang, Principal Architects – C.Y. Lee & Partners Architects/Planners, Taiwan.

Dear Sirs,

Knowing that your architectural practice designed the Taipei 101 Tower, which was completed in 2004 … and, later, was also involved in the design of other tall and super-tall buildings in Taiwan and China … we have been examining your Company WebSite very carefully.  However, some essential information is missing.

As you are probably aware … implementation of the 2005 & 2008 U.S. National Institute of Standards & Technology (NIST) Recommendations on the Collapse of WTC Buildings 1, 2 & 7, in New York City, on 11 September 2001 … is still proceeding at a snail’s pace, i.e. very slowly.  Today, many significant aspects of NIST’s Recommendations remain unimplemented.

For our International Work … we would like to understand how you have responded directly to the NIST Recommendations … and incorporated the necessary additional modifications into your current architectural designs.

Many thanks for your kind attention.  In anticipation of your prompt and detailed response …

C.J. Walsh

[2012-01-10 … No reply yet !]

.

So … how many Clients, or Client Organizations, are aware that to properly protect their interests … even, a significant part of their interests … it is vitally necessary that Project-Specific Fire Engineering Design Objectives be developed which will have a much wider scope ?   The answer is … not many !

How many Architects, Structural Engineers, and Fire Engineers fully explain this to their Clients or Client Organizations ?

And how many Clients/Client Organizations either know that they should ask, or have the balls to ask … their Architect, Structural Engineer and Fire Engineer for this explanation … and furthermore, in the case of any High-Rise Building, Iconic Building, or Building having an Important Function or an Innovative Design … ask the same individuals for some solid reassurance that they have responded directly to the 2005 & 2008 NIST WTC Recommendations … and incorporated the necessary additional modifications into your current designs … whatever current Building and Fire Codes/Regulations do or do not say ??   A big dilemma !

.

A common and very risky dilemma for Building Designers, however, arises in the situation where the Project Developer, i.e. the Client/Client Organization … is the same as the Construction Organization.  The Project Design & Construction Team – as a whole – now has very little power or authority if a conflict arises over technical aspects of the design … or over construction costs.  An even bigger dilemma !!

Colour image showing the Kingdom Tower Project, in Jeddah (Saudi Arabia) ... which will be completed in 2018. Design by Adrian Smith & Gordon Gill Architecture, USA. Click to enlarge.

Colour image showing the Kingdom Tower Project, in Jeddah (Saudi Arabia) ... which will be completed in 2018. Design by Adrian Smith & Gordon Gill Architecture, USA. Click to enlarge.

.

  4.     The Next Series of Posts – 2008 NIST WTC Recommendations

In the new year of 2012 … I will examine the later NIST Recommendations which were a response to the Fire-Induced Progressive Collapse of World Trade Center Building No.7.

Colour image showing the Signature Tower Project, in Jakarta (Indonesia) ... which will be completed in 2016. Design by Smallwood Reynolds Stewart Stewart Architects & Planners, USA. Click to enlarge.

Colour image showing the Signature Tower Project, in Jakarta (Indonesia) ... which will be completed in 2016. Design by Smallwood Reynolds Stewart Stewart Architects & Planners, USA. Click to enlarge.

.

  5.     Please … Your Comments, Views & Opinions ?!?

The future of  Conventional Fire Engineering ended on the morning of Tuesday, 11 September 2001, in New York City … an engineering discipline constrained by a long heritage deeply embedded in, and manacled to, an outdated and inflexible prescriptive approach to Codes/Regulations and Standards … an approach which is irrational, ignores the ‘real’ needs of the ‘real’ people who use and/or occupy ‘real’ buildings … and, quite frankly, no longer makes any scientific sense !!

On the other hand … having confronted the harsh realities of 9/11 and the Mumbai ‘Hive’ Attacks, and digested the 2005 & 2008 NIST WTC RecommendationsSustainable Fire Engineering … having a robust empirical basis, being ‘person-centred’, and positively promoting creativity … offers the International Fire Science and Engineering Community a confident journey forward into the future … on many diverse routes !

This IS the only appropriate response to the exciting architectural innovations and fire safety challenges of today’s Built Environment.

BUT … what do you think ?

.

.

END

Enhanced by Zemanta

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Search

 

Follow SFE2016Dublin on Twitter

December 2019
S M T W T F S
« Nov    
1234567
891011121314
15161718192021
22232425262728
293031  

Links