Fire Protection Measures

Sustainable Buildings – Design Agenda for the 21st Century ?

2009-05-06:  From the late 1980’s and the beginning of the 1990’s in European Union (EU) Research Programmes, it was noticeable that the more pressing early concerns about Energy-efficiency – logical after the oil crises of the 1970’s – were beginning to merge with those of Environment-friendliness, i.e. protection of the environment.  Even at that time, however, faint background references to Sustainability were becoming more common.

 

In 1995, therefore, Sustainable Design International developed and introduced the acronym ‘SEED’ … which stands for Sustainable, Environment-friendly, Energy-efficient Development … as a practical control, or check, on our own work output.

 

 

The next break-through came a few years later.  I briefly discussed the wide conceptual basis for our Corporate Design Philosophy in the post: ‘Sustainable Human & Social Development ?’, dated 2009-03-31.  This basis, while still continually evolving, is critical in terms of services provided, performance targets to be achieved, methods of working and relationships with client organizations, builders, craftsmen/women, manufacturers, etc.

 

This should explain the futility, in our humble view, of the ‘Green’ Agenda (as distinct from the ‘Sustainability’ Agenda) … and approaches based solely on Environmental Aspects of Sustainable Development.  They are a complete waste of time and resources.

 

 

Now in 2009, we remain fully convinced that Sustainable Design Solutions are appropriate to local geography, social need, climate, economy and culture … and are ‘person-centred’ and ‘reliability-based’.

 

Forget the images of mud housing and reading by candle light … the Future of our Built Environment is High-Tech, Smart … and Sustainable !   Let there be no doubt !!

 

 

 

Why not begin, so, by looking at a Simple Building Type … Sustainable Housing ?

 

With all of the current hype and fuss about German ‘Passiv’ Houses and Austrian High-Tech Timber Framed Construction … we have been in contact with a number of manufacturers in this region of Central Europe.  After many meetings and detailed discussions, we are disappointed … broken hearted !

 

Below follows our shopping list for the practical, commercial and affordable application, i.e. non-research, of Advanced Systems of Construction (small/medium/large scale projects – new-build and existing projects).

 

N.B.  Current Irish legal requirements and local authority technical control procedures are entirely inadequate.

 

Is anybody out there listening ???

 

 

 

To meet the urgency of Climate Change Adaptation and the challenge of Reliable Sustainability Implementation … a ‘SEED’ Building in Ireland must reach these performance targets:

 

         be set in Sustainable Landscaping (where appropriate) with Life Cycle Sustainable Drainage … and exhibit a considered, harmonious relationship between the building’s ‘interior’ environment and the ‘exterior’ built and social environments ;

 

         have a Minimum Building Life Cycle of 100 Years ;

 

         be Smart/Intelligent, Electronically Mature and facilitate Remote Building Management ;

 

         be properly shown to be Fit for Intended Use (in the Location of Use) … by CE Marking, using European Standards/Norms & European Technical Approvals (refer to Part D of the Irish Building Regulations and similar requirements in other European national building codes, European Union Safety at Work and Product Liability Legislation) ;

 

         be Super Energy-Efficient, with negligible thermal bridging and accidental air seepage … and promote and encourage, by design, Energy Conservation ;

 

         have a substantial component of Renewable Energy & Heat Technologies … sufficient to return a multiple of the building’s energy consumption to an Intelligent Regional or District Grid … and also incorporate Recycling, Rainwater Re-Use and Waste Management Technologies ;

 

         offer a high level of Indoor Air Quality, including proper protection from Natural Radon ;

 

         be Flexible and Adaptable with regard to internal layout, and Accessible for People with Activity Limitations (2001 WHO ICF) – in order to prolong Building Life Cycle and maximize Building Usability ;

 

         contain, as standard and for reasons of safety, a Domestic Sprinkler System and a remotely monitored Fire Detection System … plus a Carbon Monoxide (CO) Detection System, with a detection unit in the vicinity of each fuel burning appliance ;

 

and

 

         be Competently Built and Reliably Completed to project programme and cost estimate … with the building’s ‘Real’ Performance-in-Use capable of being tested, and continually monitored, over the complete building life cycle ;

 

and

 

         be simple and straightforward for Building Users/Occupiers to operate.

 

 

 

Principal Areas of Inadequate Performance …

 

1.  Showing Fitness for Intended Use.  Although a Single European Market for the Construction Sector exists on paper (not yet in reality) … this requirement is not well understood by manufacturers … particularly in Germany and Austria, where outdated national approaches to building product/system approval still take precedence over anything at European level.

 

2.  Domestic Sprinkler Systems.  There is a high level of resistance, among most manufacturers, to the installation of these systems.  Not acceptable !!

 

3.  Accessibility of Buildings for People with Activity Limitations.  Not well understood by manufacturers and building organizations (at all levels).  Although there is a lot of legislation in Europe covering this particular issue … it is routinely disregarded and/or very poorly implemented.  In Germany and Austria, for example, the long outdated term ‘barrier-free design’ is still in common use.  Can you believe that ?

 

4.  Radon Protection of Buildings.  Not considered important in Germany and Austria … so manufacturers just don’t bother.

 

5.  Fabric Thermal Performance.  Where building systems are ‘adapted’ for use in Ireland, I have seen thermal performance, as originally designed in Germany/Austria, seriously compromised by the installation of meter boxes and permanent ventilation openings in external walls.  Just the tip of the iceberg !

 

.

 

.

 

END

Enhanced by Zemanta

Fire Evacuation of People with Disabilities – Reality Bites ?

2009-03-10:   Regarding Seán’s Comment, dated 2009-03-06.

 

Yes, the guidance provided in Technical Guidance Document B (Ireland) is inadequate … and the same can equally be said of Approved Document B (England & Wales).

 

And yes, you will find only partial answers in British Standard BS 9999, even though it was only published on 31st October 2008 last.

 

Access Consultants in Ireland and Great Britain rarely deal with any matters relating to fire safety in buildings.

 

 

 

Please allow me, therefore, to fill in some gaps for you.  The following guidance is suitable for application in any European country …

 

People with Activity Limitations (2001 WHO ICF) experience many difficulties when attempting to independently evacuate a fire building.  However, our reasoning is very simple.  If we can get things right for the most vulnerable building users, we get them right for everyone else also.

 

 

The Target Destination … whether evacuation is independent, assisted by other building users or accomplished by means of firefighter rescue … is a ‘Place of Safety’.  This term is not well defined in legislation or codes.

 

Building User ‘Place of Safety’:

Any location beyond a perimeter which is [100] metres from the fire building or a distance of [10] times the height of such building, whichever is the greater … and … where necessary and effective medical care and attention can be provided, or organized, within one hour of injury … and … where people can be identified.

 

Where there is a Risk of Explosion … multiply the numbers in square brackets above by 4 (at least !).

 

 

 

All Fire Evacuation Routes – inside and outside a building – should comply with Accessibility Design Criteria.  This is an entirely alien concept to many Fire Prevention Officers in Local Authorities, and Fire Consultants !

 

Panic Attacks, during evacuation in a ‘real’ fire incident, exist.

 

Standard Movement Times, during evacuation in a ‘real’ fire incident, do not exist.

 

 

 

People should be able to reach an ‘Area of Rescue Assistance’ inside a building with ease.  In practice, few people understand what the word ‘refuge’ means (as in … refuge point, refuge area, area of refuge, etc).  As a result, these spaces are regularly misused and/or abused in buildings.  And there is great difficulty translating a word into other languages which, in English, can have so many meanings.  In Italian fire safety legislation, for example, ‘refuge’ has been translated as ‘spazio calmo’.  How crazy is that ?

 

So … what is an ‘Area of Rescue Assistance’ ?

A building space directly adjoining, and visible from, a main vertical evacuation route – robustly and reliably protected from heat, smoke and flame during and after a fire – where people may temporarily wait with confidence for further information, instructions, and/or rescue assistance, without obstructing or interfering with the evacuation travel of other building users.

 

 

This is a notional Area of Rescue Assistance …

 

A Clear Evacuation Width of 1.5 metres on the Evacuation Staircase facilitates ‘contraflow’ in a fire emergency (shown on the lower flight of stairs), i.e. emergency access by firefighters entering a building and moving towards a fire, while building users are moving away from the fire and evacuating the building … as well as allowing sufficient space to safely carry an occupied wheelchair down the staircase (shown on the upper flight of stairs).

 

Drawing showing a notional Area of Rescue Assistance in a Building. Click to enlarge. Based on a design by CJ Walsh. Drawn by S Ginnerup, Denmark.
Drawing showing a notional Area of Rescue Assistance in a Building. Click to enlarge. Based on a design by CJ Walsh. Drawn by S Ginnerup, Denmark.

 

 

Evacuation Skills & Self-Protection from Fire in Buildings …

A ‘skill’ is the ability of a person – resulting from adequate training and regular practice – to carry out complex, well-organized patterns of behaviour efficiently and adaptively, in order to achieve some end or goal.

 

Building users should be skilled for evacuation to a ‘place of safety’, and test/drill/non-emergency evacuations should be carried out sufficiently often to equip building users with that skill.  Consideration should be given to practicing evacuation once every month or, at most, every two months; once a year is inadequate.  In the case of people with a mental or cognitive impairment, there is a particular need to encourage, foster and regularly practice the adaptive thinking which will be necessary during a ‘real’ fire incident.

 

Since Fire Protection Measures and Human Management Systems are never 100% reliable … it is necessary for frail older people and building users with disabilities to be familiar with necessary guidelines for self-protection in the event of a fire emergency.

 

 

Assisted Evacuation & Rescue Techniques …

Firefighters have two functions:

         fighting fires ;  and

         rescuing people who are trapped in buildings, or for some reason, cannot independently evacuate a building which is on fire.

 

People with disabilities are participating more and more, and in ever increasing numbers, in mainstream society.  It is necessary, particularly for firefighters, to become skilled in how best to rescue a person with a disability from a building, using procedures and equipment which will not cause further harm or injury to that person.

 

Manual handling of occupied wheelchairs in a fire evacuation staircase, even with adequate training for everyone directly and indirectly involved, is hazardous for the person in the wheelchair and those people – minimum three – giving assistance.

 

Generally … Powered Wheelchairs are too heavy for manual handling in any situation.

 

For these reasons, all lifts/elevators in new buildings should be capable of being used for fire evacuation.  Lifts/elevators in existing buildings, when being replaced or undergoing major overhaul, should then be made capable of being used for fire evacuation.

 

Local Fire Authorities should ensure that they possess the necessary equipment to rescue people with a wide range of impairments, and that specialized rescue equipment is regularly serviced and maintained.  Every Fire Authority should have an ‘accessible’ and ‘reliable’ Emergency Call System which is available, at all times, to the public within its functional area.

 

It is essential that every Firefighter is fully aware of this important public safety issue, and is regularly trained in the necessary rescue procedures involving people with a wide range of impairments.

 

.

 

.

 

END

Enhanced by Zemanta