Ireland

2012 Review of Part B & TGD B – Irish Building Regulations

2012-03-02:  Please bear with me while I update you at the start of this post … rather than at the end, which would be more usual here … and logical.

[ In Ireland … a related problem, which continues to fester and cause a great nuisance in an everyday work environment … concerns the lack of proper, i.e. formal, recognition of electronic communications, and information in an electronic format, by public and private organizations … in spite of the following very clear legal text …

2000 Electronic Commerce Act (No. 27 of 2000)

Section 9 – Electronic Form not to Affect Legal Validity or Enforceability

Information (including information incorporated by reference) shall not be denied legal effect, validity or enforceability solely on the grounds that it is wholly or partly in electronic form, whether as an electronic communication or otherwise. ]

.

Yesterday afternoon (1 March 2012), we received the following e-mail communication from the Department of Environment, Community & Local Government (DECLG)

Folks,

Could you please send me your submissions in either Microsoft Word or Excel as it it easier to copy and paste into the format that is required , it is proving rather difficult to copy from a PDF document.

Thank You

Claire Darragh, Architecture / Building Standards, DECLG.

.

I immediately replied …

Dear Claire,

Further to your informal e-mail message, which we received just a short while ago …

Please note that this is not an acknowledgement that the FireOx International Submission was received by the Department … and we certainly do not wish that you copy and paste anything relating to its contents anywhere else.

IF this is a Proper Public Consultation Process … you must adapt internal DECLG systems to suit the Submissions !   We will be communicating with the Minister’s Office concerning this issue.

Once again, I would ask you to properly acknowledge receipt of our Submission, dated 2012-02-14.

.

In connection with the original FireOx International Submission … I would also like to take this opportunity to advise you that:

  • Due to an error in ISO (International Standards Organization) … the publication of ISO 21542: ‘Building Construction – Accessibility and Usability of the Built Environment’, on 12 December 2011, was not notified to people directly involved in its development and drafting, or to the participating national standards organizations ; 

and

  • In order to avoid the wide confusion which the term ‘Fire-Induced Progressive Collapse’ is continuing to cause at international level … the preferred term is now Fire-Induced Progressive Damage.

.

I have amended our Submission accordingly.

Kind regards.

C. J. Walsh, FireOx International – Ireland, Italy & Turkey.

.

.

2012-02-18:  The following is the text of  FireOx International’s Submission, dated 14 February 2012, to the Department of the Environment, Community & Local Government (DECLG) in Dublin … concerning the current review of the Irish Building Regulations Part B & TGD B … including, for good measure, some initial and very pertinent comments on the Irish Building Control Regulations.

None of these comments will come as any surprise to regular visitors here.

It should also be noted that the same comments are just as relevant in the case of the British (England & Wales) Building Regulations, Part B and Approved Document (AD) B !

.

Ms. Claire Darragh, Architecture & Building Standards Section, DECLG.

Dear Claire,

Thank you for this opportunity to advise the Department on some urgent and necessary improvements to Part B: ‘Fire Safety’ of the 2nd Schedule to the Building Regulations in Ireland … and its supporting Technical Guidance Document (TGD) B.

1.  Some Initial Comments

  • The continuing debacle of the Priory Hall Apartment Complex, in Donaghmede Dublin 13, is just the tip of a very large iceberg in Ireland.  Yet, when we now hear that there will be a ‘risk-based’ approach to Septic Tank Inspections, instead of an approach which involves inspecting all septic tanks … independently, competently and thoroughly … it is clear that the Minister, and senior officials in his Department, have failed to learn any lessons from ‘Priory Hall’.

What was happening on Irish construction sites during the Celtic Tiger boom years … has been happening for twenty years all over the country … more precisely, since the introduction of legal national building regulations in 1991, with NO effective building control … and, before that again, in those parts of the country outside of the major urban areas having legal building bye-laws AND effective building control, i.e. mandatory inspections by competent local authority personnel at the foundation level and drainage level of ALL projects … and, depending on the type of project, occasional or frequent inspections above ground level.

Over the years, local authority officials who carried out building bye-law inspections accumulated a considerable wealth of knowledge and understanding about local construction conditions and practices.  This valuable resource, widely used by the construction industry at the time, has now been diluted and discarded.

PLEASE LEARN THE LESSONS FROM ‘PRIORY HALL’ !!

In connection with ALL Applications for Fire Safety Certificates (Part B) and Disability Access Certificates (Part M) … competent and thorough inspections must, from now on, be carried out by local authority personnel to confirm proper implementation of Part B & M, respectively, of the 2nd Schedule to the Building Regulations.

Furthermore … while on site, local authority personnel must not be discouraged, or restricted, from dealing with any other Parts of the 2nd Schedule to the Building Regulations.  Under the present dysfunctional system, important horizontal linkages between different Parts of the 2nd Schedule are being widely disregarded and ignored, e.g. between Parts B & D, between Parts B & M, and between Parts B & A … or between Parts M & D, etc., etc !

  • European Union (EU) Council Directive 89/106/EEC has been repealed … and, instead, we now have EU Regulation No 305/2011 of the European Parliament and of the Council, of 9 March 2011, laying down Harmonised Conditions for the Marketing of Construction Products.

Unlike the earlier EU Directive … this Regulation, applicable in all EU Member States, is binding in its entirety.

And although Annex I of EU Regulation 305/2011 will enter into force from 1 July 2013 … the Department should now prepare for, and slowly begin the process of, incorporating all of the Annex I Basic Requirements for Construction Works into the 2nd Schedule of the Irish Building Regulations.

SEE BELOW …

.

2.  Firefighter Safety

Fully consistent with Basic Requirement for Construction Works 2(e), in Annex I of EU Regulation No. 305/2011 … Revise Part B Requirement 5 to read as follows …

B5  Firefighter Safety, and Access and Facilities for the Fire Service

A building shall be so designed and constructed that the safety of firefighters is adequately considered and, in the event of an outbreak of fire, that there is adequate provision for access for fire appliances and such other facilities as may be required to assist the fire service in the protection of life and property.

Two examples of issues which should be highlighted in a relevant revision/addition to TGD B’s Guidance Text:

  • The incorporation, in building designs, of alternative safe means of approach towards the scene of a fire by firefighters ;
  • The provision of wider staircases in buildings in order to facilitate the recovery of an injured/impaired firefighter during the course of firefighting operations.

.

3.  Protection of Vulnerable Building Users from Fire

The European Union ratified the United Nations Convention on the Rights of Persons with Disabilities (CRPD) on 23 December 2010.  Ireland has not yet ratified the Convention.

However … fully consistent with Ireland’s legal obligation, under Article 4.3 of the Treaty on European Union (TEU), to co-operate fully with EU Institutions in their implementation of this UN Convention … Revise Part B Requirement 1 to read as follows …

B1  Means of Evacuation in the Event of an Outbreak of Fire

A building shall be so designed and constructed that the protection of vulnerable building users is adequately considered and, in the event of an outbreak of fire, that there are adequate and accessible means of evacuation from the building to a place of safety remote from the building, capable of being safely and effectively used.

[ Use of the word ‘escape’, in the context of emergencies, should be strongly discouraged at all times. ]

Concerning TGD B’s Guidance Text … reference to ISO 21542: ‘Building Construction – Accessibility and Usability of the Built Environment’ will be more than sufficient.

.

Specifically relating to Adequate Protection of Vulnerable Building Users from Fire

NOTE WELL THAT BS 9999 (AND BS 5588:PART EIGHT)  IS (ARE)  ENTIRELY UNFIT FOR PURPOSE !!

Please carefully examine the attached PDF File – My Note for the National Standards Authority of Ireland:  ‘BS 9999:2008 & BS 8300:2009 – Impacts on Accessibility Design in Ireland & Implications for ISO Accessibility & Fire Safety Standards’ , dated June 2009.

.

4.  TGD B’s Appendix A – Performance of Materials and Structures

2 Important Notes should be added to Paragraph A21 – Structural Fire Design

  • In complying with Part B, reference should also be made to Part A of the 2nd Schedule of the Building Regulations, particularly Requirement A3 – Disproportionate Collapse ;

and

  • In order to show that a Fire Protection Material/Product/System for Structural Elements properly complies with Part D … it is also necessary, besides showing that it has been adequately fire tested, to show that the material/product/system is durable over a specified, reasonably long life cycle … and that it can adequately resist mechanical damage during construction of the building and, in the event of an outbreak of fire, during the course of that fire incident.

.

Specifically relating to Steel Structural Performance in Fire

You should be aware that Table A1 and Table A2 are only appropriate for use by designers in the case of single, isolated steel structural elements.

In steel structural frame systems, no consideration is given in the Tables to adequate fire protection of connections … or limiting the thermal expansion (and other types of distortion) in fire of steel structural elements … in order to reduce the adverse effects of one steel element’s behaviour on the rest of the frame and/or adjoining non-loadbearing fire resisting elements of construction.

In the case of steel structural frame systems, therefore, the minimum fire protection to be afforded to ALL steel structural elements, including connections, should be 2 Hours.  Connections should also be designed and constructed to be sufficiently robust during the course of a fire incident.  This one small revision will contribute greatly towards preventing Fire-Induced Progressive Damage in buildings … a related, but different, structural concept to Disproportionate Damage …

Disproportionate Damage

The failure of a building’s structural system  (i) remote from the scene of an isolated overloading action;  and (ii) to an extent which is not in reasonable proportion to that action.

Fire-Induced Progressive Damage

The sequential growth and intensification of structural distortion and displacement, beyond fire engineering design parameters, and the eventual failure of elements of construction in a building – during a fire and the ‘cooling phase’ afterwards – which, if unchecked, will result in disproportionate damage, and may lead to total building collapse.

.

With regard to the above … please carefully examine these 2 Series of Posts on FireOx International’s Technical Blog ( www.cjwalsh.ie ), beginning on the dates indicated …

  • 2011-10-25:  NIST’s (2005) Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30) ;

and

  • 2012-01-18:  Progressive Collapse of WTC 7 – 2008 NIST Recommendations – Part 1 of 2 … GROUP 1. Increased Structural Integrity – Recommendation A … and GROUP 2. Enhanced Fire Endurance of Structures – Recommendations B, C, D & E (out of 13).

.

5.  TGD B’s Appendix F – Reference Standards

Add this Important New Standard …

  • ISO 21542 : 2011     Building Construction – Accessibility and Usability of the Built Environment

.

6.  TGD B’s Appendix G – Reference Publications

Add these Two Important Publications …

  • NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1.  Gaithersburg, MD, USA.

and

  • NIST (National Institute of Standards and Technology).  August 2008.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of World Trade Center Building 7.  NIST NCSTAR 1A.  Gaithersburg, MD, USA.

.

Should you wish to receive further information on any of my comments … please consult FireOx International’s Technical Blog at  www.cjwalsh.ie … or contact me directly.

Please acknowledge receipt of this e-mail communication.

.

Kind regards.

C. J. Walsh, FireOx International – Ireland, Italy & Turkey.

.

.

END

Enhanced by Zemanta

NIST WTC Recommendations 12-15 > Improved Active Protection

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building CollapsesGROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

.

2011-11-25:  SOME PRELIMINARY COMMENTS …

  1.     Reliability has always been an issue with Active Fire Protection Systems … but, it is neither acknowledged, nor fully understood, that … Reliability Is Equally An Issue With Passive Fire Protection Measures !

Furthermore, the following should always be taken into account when considering the Safety Factors to be applied in calculating the level of satisfactory fire safety and protection which is provided in a specific project … one of the design objectives in Ethical Fire Engineering.

For example, if Category C below is indicative of the design and construction quality on a particular building site … just think of the Priory Hall Apartment Development in Dublin (!) … the Safety Factors to be applied in the design should be high … and with regard to actual construction, it should be expected that the Reliability of both Active Fire Protection Systems and Passive Fire Protection Measures will be initially low … with Life Cycle Reliability being entirely non-existent.

Quality of Fire Engineering Design & Related Construction 

Category A

(a)   Design of the works is exercised by an independent, appropriately qualified and experienced architect/engineer/fire engineer, with design competence relating to fire safety and protection in buildings … and, most importantly, that he/she interacts directly with the Project Design Professional in Responsible Charge ;

(b)   Installation/fitting of related construction products/systems is exercised by appropriately qualified and experienced personnel, with construction competence relating to fire safety and protection in buildings ;

(c)   Supervision of the works is exercised by appropriately qualified and experienced personnel from the principal construction organization ;

(d)   Regular inspections, by appropriately qualified and experienced personnel familiar with the design, and independent of the construction organization(s), are carried out to verify that the works are being executed in accordance with the fire engineering design.

Category B

(a)   Design of the works is exercised by an independent, appropriately qualified and experienced architect/engineer/fire engineer ;

(b)   Installation/fitting of fire-related construction products/systems is exercised by appropriately qualified and experienced personnel ;

(c)   Supervision of the works is exercised by appropriately qualified and experienced personnel from the principal construction organization.

Category C

This level of design and construction execution is assumed when the requirements for Category A or Category B are not met.

  2.     With regard to Recommendations 12 & 13 below … in an earlier post in this series, and elsewhere, I have defined Disproportionate Damage … and differentiated that structural concept from the related concept of Fire-Induced Progressive Collapse.

A significant number of countries include a requirement on Resistance to Disproportionate Damage in their national building codes.  Often, it is only necessary to consider this requirement in the case of buildings having 5 Storeys, or more … a completely arbitrary height threshold.  I would consider that adequately tying together the horizontal and vertical structural elements of a building … any building … is a fundamental principle of good structural engineering !!

Putting it simply … for the purpose of showing compliance with this structural requirement … it is necessary to demonstrate that a building will remain structurally stable if a portion of the building’s structure is removed … always remembering that every building comprises both structure and fabric, i.e. non-structure.

In reality this may happen, and quite often does happen, when, for example, a large truck runs into the side of a building, which can happen anywhere … or there is a gas explosion in some part of the building, which happened in Dublin’s Raglan House back in 1987, and many times in other countries … or a plane hits a high-rise building, which happened to Milan’s iconic Pirelli Tower in 2002, and to New York’s Empire State Building way back in 1945 … etc., etc.  Raglan House collapsed … the Pirelli Tower and the Empire State Building did not.

[ The World Trade Center Towers were originally designed to absorb the impact of a large plane and to remain structurally stable afterwards … in ambient conditions.  However, what was not considered in the ambient structural design was ‘fire’, i.e. the fuel tanks were empty and no fire in the building would be initiated as a result of the mechanical damage caused by the plane impact … which, on 11 September 2001, proved to be a ridiculous basis for any structural design !   This is why 9-11 should be regarded, at its core, as being a very serious ‘real’ fire incident.]

What I am leading up to is this … the concept of removing a portion of a building, and it remaining structurally stable afterwards … should now – logically and rationally – also be incorporated into the fire engineering design of Active Fire Protection Systems.  In other words, if a portion of a building is removed, will any particular Active Fire Protection System continue to operate effectively in the rest of the building ?   This has implications for the location and adequate protection of critical system components in a building … and for the necessary redundancy, zoning and back-up alternative routeing which must be designed into the system from the beginning !

.

2005 NIST WTC RECOMMENDATIONS

GROUP 4.  Improved Active Fire Protection

Active fire protection systems (i.e. sprinklers, standpipes/hoses, fire alarms, and smoke management systems) should be enhanced through improvements to the design, performance, reliability, and redundancy of such systems.

NIST WTC Recommendation 12.

NIST recommends that the performance and possibly the redundancy of active fire protection systems (sprinklers, standpipes/hoses, fire alarms, and smoke management systems) in buildings be enhanced to accommodate the greater risks associated with increasing building height and population, increased use of open spaces, high-risk building activities, fire department response limits, transient fuel loads, and higher threat profile.  The performance attributes should deal realistically with the system design basis, reliability of automatic/manual operations, redundancy, and reduction of vulnerabilities due to single point failures.  Affected Standards:  NFPA 13, NFPA 14, NFPA 20, NFPA 72, NFPA 90A, NFPA 92A, NFPA 92B, and NFPA 101.  Model Building Codes:  The performance standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 13.

NIST recommends that fire alarm and communications systems in buildings be developed to provide continuous, reliable, and accurate information on the status of life safety conditions at a level of detail sufficient to manage the evacuation process in building fire emergencies;  all communication and control paths in buildings need to be designed and installed to have the same resistance to failure and increased survivability above that specified in present standards.  This should include means to maintain communications with evacuating occupants that can both reassure them and redirect them if conditions change.  Pre-installed fire warden telephone systems can serve a useful purpose and may be installed in buildings and, if so, they should be made available for use by emergency responders.  All communication and control paths in buildings need to be designed and installed to have the same resistance to failure and increased survivability above that specified in present standards.  Affected Standards:  NFPA 1, NFPA 72, and NFPA 101.  Model Building and Fire Codes:  The performance standards should be adopted in model building and fire codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 14.

NIST recommends that control panels at fire/emergency command stations in buildings be adapted to accept and interpret a larger quantity of more reliable information from the active fire protection systems that provide tactical decision aids to fire ground commanders, including water flow rates from pressure and flow measurement devices, and that standards for their performance be developed.  Affected Standards:  NFPA 1, NFPA 72, and NFPA 101.  Model Building and Fire Codes:  The performance standards should be adopted in model building and fire codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 15.

NIST recommends that systems be developed and implemented for:  (1) real time off-site secure transmission of valuable information from fire alarm and other monitored building systems for use by emergency responders, at any location, to enhance situational awareness and response decisions, and maintain safe and efficient operation;*  and (2) preservation of that information either off-site, or in a black box that will survive a fire or other building failure, for purposes of subsequent investigations and analysis.  Standards for the performance of such systems should be developed, and their use should be required.  Affected Standards:  NFPA 1, NFPA 72, and NFPA 101.  Model Building and Fire Codes:  The performance standards should be adopted in model building and fire codes by mandatory reference to, or incorporation of, the latest edition of the standard.

[ * F-35  The alarm systems in the WTC towers were only capable of determining and displaying: (a) areas that had at some time reached alarm point conditions; and (b) areas that had not.  The quality and reliability of information available to emergency responders at the Fire Command Station was not sufficient to understand the fire conditions.  The only information transmitted outside the buildings was the fact that the buildings had gone into alarm.  Further, the fire alarm system in WTC Building 7, which was transmitted to a monitoring service, was on ‘test mode’ during the morning of 11 September 2001, because routine maintenance was being performed.  Under test mode conditions: (1) the system is typically disabled for the entire building, not just for the area where work is being performed; and (2) alarm signals typically do not show up on an operator console.]

.

.

END

NIST WTC Recommendations 8-11 > New Design of Structures

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building CollapsesGROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

.

2011-11-24:  SOME PRELIMINARY COMMENTS …

  1.     The first of two NIST Publications being referenced in this Series of Posts is as follows …

NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1.  Gaithersburg, MD, USA.

The 2005 NIST Report concludes, in Chapter 9, with a list of 30 Recommendations for Action, grouped together under the following 8 Subject Headings

i)        Increased structural integrity ;

ii)       Enhanced fire endurance of structures ;

iii)      New methods for fire resisting design of structures ;

iv)      Enhanced active fire protection ;

v)       Improved building evacuation ;

vi)      Improved emergency response ;

vii)     Improved procedures and practices ;   and

viii)    Education and training.

NIST has clearly stated that “the numerical ordering (of the Recommendations) does not reflect any priority”.

From my point of view, the 2005 NIST Report is especially noteworthy for the emphasis placed on:

(a)     The 3 R’s … Reality – Reliability – Redundancy ;

(b)     Evacuation Way Finding … should be ‘intuitive and obvious’ … a major challenge for building designers, since buildings are still typically designed for ‘access’ only.  In order to find the evacuation routes in a building, it is usually necessary to have a compass, a map, a magnifying glass, a torch … and a prayer book !!!   More about this in later posts …

  2.     However, following on from NIST’s emphasis on Reality … and just between you, me and the World Wide Web … there is a lot of misunderstanding in the International Fire Science and Engineering Community about what exactly is the Realistic End Condition.  But, here it goes …

Realistic End Condition:  A ‘real’ fire in a ‘real’ building, which is used by ‘real’ people with varying abilities in relation to self-protection, independent evacuation to a ‘place of safety’, and participation in the Fire Defence Plan for the building.

It is strange, therefore … and quite unacceptable … to have to point out that the Realistic End Condition IS NOT … a test fire or an experimental fire in a laboratory … or a design fire in a computer model, even IF it is properly validated !

  3.     With regard to Recommendation 8 below … NIST’s contention that “Current methods for determining the fire resistance of structural assemblies do not explicitly specify a performance objective” is not strictly the case.

If we examine Technical Guidance Document B (Ireland) and Approved Document B (England & Wales) once again, as examples close to home … Part B: ‘Fire Safety’ in both jurisdictions should be read in conjunction with its associated Part A: ‘Structure’, which contains a requirement on Disproportionate Damage.

In everyday practice, however, this never happens.  Instead, people dealing with Part B in both jurisdictions enter a sort of bubble … a twilight zone … and, if there is anything to do with structural performance in fire, they immediately refer to the Appendices at the back of both Guidance Documents (ignoring Part A altogether) … where we find a ‘single element’ approach to design, no consideration of connections, etc., etc., etc.

And … this fundamental error is further reinforced in Ireland because, under the national system of Fire Safety Certification for buildings, it is only Part B which is relevant.

At European Level, I would make the same point … under EU Regulation 305/2011 on Construction Products … Basic Requirement for Construction Works 2: ‘Safety in Case of Fire’ must be read in conjunction with Basic Requirement 1: ‘Mechanical Resistance & Stability’ … where we will again find a direct reference to Disproportionate Damage … and an indirect, but explicit, reference to Serviceability Limit States under normal conditions of use … including fire !

A major gap … the missing link at international level … is the failure, still, to elaborate and flesh out the structural concept of Fire-Induced Progressive Collapse.  More about this in later posts …

  4.     With regard to Recommendation 10 below … and amplifying my earlier comments concerning Recommendation 6 … the manufacturers of all Lightweight Structural Fire Protection Systems … not just the Sprayed Systems … have a lot to answer for.

Major question marks concerning Life Cycle Durability, and Resistance to Mechanical Damage at any stage in a building’s life cycle, hang over all of these systems.

Fire testing, alone, does not show that a Lightweight Structural Fire Protection System is ‘fit for its intended use’ !   And manufacturers well know this !!!

And as for the Installation of Lightweight Structural Fire Protection Systems on site … it’s a hornets’ nest that nobody wants to touch !

Vested interests … vested interests … vested interests !!!

.

2005 NIST WTC RECOMMENDATIONS

GROUP 3.  New Methods for Fire Resisting Design of Structures

The procedures and practices used in the fire resisting design of structures should be enhanced by requiring an objective that uncontrolled fires result in burnout without partial or global (total) collapse.  Performance-based methods are an alternative to prescriptive design methods.  This effort should include the development and evaluation of new fire resisting coating materials and technologies, and evaluation of the fire performance of conventional and high-performance structural materials.

NIST WTC Recommendation 8.

NIST recommends that the fire resistance of structures be enhanced by requiring a performance objective that uncontrolled building fires result in burnout without partial or global (total) collapse.  Such a provision should recognize that sprinklers could be compromised, non-operational, or non-existent.  Current methods for determining the fire resistance of structural assemblies do not explicitly specify a performance objective.  The rating resulting from current test methods indicates that the assembly (component or sub-system) continued to support its superimposed load (simulating a maximum load condition) during the test exposure without collapse.  Model Building Codes:  This Recommendation should be included in the national model building codes as an objective, and adopted as an integral pert of the fire resistance design for structures.  The issue of non-operational sprinklers could be addressed using the existing concept of Design Scenario 8 of NFPA 5000, where such compromise is assumed and the result is required to be acceptable to the Authority Having Jurisdiction (AHJ).  Affected Standards:  ASCE-7, AISC Specifications, ACI 318, and ASCE/SFPE 29.

NIST WTC Recommendation 9.

NIST recommends the development of:  (1) performance-based standards and code provisions, as an alternative to current prescriptive design methods, to enable the design and retrofit of structures to resist real building fire conditions, including their ability to achieve the performance objective of burnout without structural or local fire collapse;  and (2) the tools, guidelines, and test methods necessary to evaluate the fire performance of the structure as a whole system.  Standards development organizations, including the American Institute of Steel Construction, have already begun developing performance-based provisions to consider the effects of fire in structural design.

This performance-based capability should include the development of, but not be limited to:

a.     Standard methodology, supported by performance criteria, analytical design tools, and practical design guidance;  related building standards and codes for fire resistance design and retrofit of structures, working through the consensus process for nationwide adoption;  comprehensive design rules and guidelines;  methodology for evaluating thermo-structural performance of structures;  and computational models and analysis procedures for use in routine design practice.

b.     Standard methodology for specifying multi-compartment, multi-floor fire scenarios for use in the design and analysis of structures to resist fires, accounting for building-specific conditions such as geometry, compartmentation, fuel load (e.g. building contents and any flammable fuels such as oil and gas), fire spread, and ventilation;  and methodology for rating the fire resistance of structural systems and barriers under realistic design-basis fire scenarios.

c.     Publicly available computational software to predict the effects of fires in buildings – developed, validated, and maintained through a national effort – for use in the design of fire protection systems and the analysis of building response to fires.  Improvements should include the fire behaviour and contribution of real combustibles;  the performance of openings, including door openings and window breakage, that controls the amount of oxygen available to support the growth and spread of fires and whether the fire is fuel-controlled or ventilation-controlled;  the floor-to-floor flame spread;  the temperature rise in both insulated and un-insulated structural members and fire barriers;  and the structural response of components, sub-systems, and the total building system due to the fire.

d.     Temperature-dependent thermal and mechanical property data for conventional and innovative construction materials.

e.     New test methods, together with associated conformance assessment criteria, to support the performance-based methods for fire resistance design and retrofit of structures.  The performance objective of burnout without collapse will require the development of standard fire exposures that differ from those currently used.

Affected National and International Standards:  ASCE-7, AISC Specifications, ACI 318, and ASCE/SFPE 29 for fire resistance design and retrofit of structures;  NFPA, SFPE, ASCE, and ISO TC92 SC4 for building-specific multi-compartment, multi-floor design basis fire scenarios;  and ASTM, NFPA, UL, and ISO for new test methods.  Model Building Codes:  The performance standards should be adopted as an alternative method in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 10.

NIST recommends the development and evaluation of new fire resisting coating materials, systems, and technologies with significantly enhanced performance and durability to provide protection following major events.  This could include, for example, technologies with improved adhesion, double-layered materials, intumescent coatings, and more energy absorbing SFRM’s.*  Consideration should be given to pre-treatment of structural steel members with some type of mill-applied fire protection to minimize the uncertainties associated with field application and in-use damage.  If such an approach were feasible, only connections and any fire protection damaged during construction and fit-out would need to be field-treated.  Affected Standards:  Technical barriers, if any, to the introduction of new structural fire resisting materials, systems and technologies should be identified and eliminated in the AIA MasterSpec, AWCI Standard 12 and ASTM standards for field inspection, conformance criteria, and test methods.  Model Building Codes:  Technical barriers, if any, to the introduction of new structural fire resisting materials, systems, and technologies should be eliminated from the model building codes.

[ * F-34  Other possibilities include encapsulation of SFRM by highly elastic energy absorbing membranes or commodity grade carbon fibre or other wraps.  The membrane would remain intact under shock, vibration, and impact but may be compromised in a fire, yet allowing the SFRM to perform its thermal insulation function.  The carbon wrap would remain intact under shock, vibration, and impact, and possibly under fire conditions as well.]

NIST WTC Recommendation 11.

NIST recommends that the performance and suitability of advanced structural steels, reinforced and pre-stressed concrete, and other high-performance material systems be evaluated for use under conditions expected in building fires.  This evaluation should consider both presently available and new types of steels, concrete, and high-performance materials to establish the properties (e.g. yield and ultimate strength, modulus, creep behaviour, and failure) that are important for fire resistance, establish needed test protocols and acceptance criteria for such materials and systems, compare the performance of newer systems to conventional systems, and the cost-effectiveness of alternative approaches.  Technical and standards barriers to the introduction and use of such advanced steels, concrete, and other high-performance material systems should be identified and eliminated, or at least minimized, if they are found to exist.  Affected Standards:  AISC Specifications and ACI 318.  Technical barriers, if any, to the introduction of these advanced systems should be eliminated in ASTM E 119, NFPA 251, UL 263, ISO 834.  Model Building Codes:  Technical barriers, if any, to the introduction of these advanced systems should be eliminated from the model building codes.

.

.

END

NIST WTC Recommendations 4-7 > Structural Fire Endurance

First Post in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

.

2011-11-18:  SOME PRELIMINARY COMMENTS …

  1.     Before launching into the next Group of NIST WTC Recommendations, it would be useful to distinguish between the following technical terms … which have been adapted from ISO/TR 10158: ‘Principles and Rationale Underlying Calculation Methods in Relation to Fire Resistance of Structural Elements’

Real Fire:  A fire which develops in a building and which is influenced by such factors as the type of building and its occupancy;  the combustible content (fire load);  the ventilation, geometry and thermal properties of the fire compartment, or building space (should no fire compartmentation exist);  the fire suppression systems in the building and the actions of the fire services.

Real Fires are complex phenomena.  Consequently, in structural fire engineering, idealized versions of ‘real fires’ are employed.

Experimental Fire:  A full or reduced scale fire with specified and controlled characteristics.

Design Fire:  A fire with specified exposure data intended for use in connection with structural fire engineering calculations.

A Design Fire may either be representative of the thermal exposure described by the standard time-temperature-pressure relationship in an International/European/National Standard, or some non-standard exposure intended to simulate particular fire exposure conditions.

However, in SDI Technical Guidance Note 95/102: ‘Proper Evidence of a Fire Test Result within the European Economic Area (EEA)’, issued on 22 May 1995, I included the following caution …

#1.7  A Fire Test in a Fire Test Laboratory, involving exposure of a test specimen or prototype to ‘test fire’ conditions, gives only a limited indication of:  (a) the likely performance of a particular product, material or component when exposed to ‘real fire’ conditions;  and (b) the suitability of a product, material or component for a particular end use.

  2.     In conventional fire engineering, much confusion arises because of a failure to properly distinguish between these two concepts …

Fire Resistance

The inherent capability of a building assembly, or an ‘element of construction’, to resist the passage of heat, smoke and flame for a specified time during a fire.

Structural Reliability

The ability of a structural system to fulfil its design purpose, for a specified time, under the actual environmental conditions encountered in a building.

[ In structural fire engineering, the concern must be that the structure will fulfil its purpose, both during the fire – and for a minimum period afterwards, during the ‘cooling phase’.]

  3.     Therefore, with regard to Recommendation 6 … it is more correct and precise to refer to ‘Steel Fire Protection Systems’, rather than to ‘steel fire resisting materials’ !   AND … the same questions must be asked about All Lightweight Steel Fire Protection Systems … not just the sprayed systems.

Lightweight Fire Protection Systems are also used to protect concrete in buildings and tunnels.

  4.     These 2005 NIST Recommendations will later be confirmed, and further reinforced, by the 2008 NIST Recommendations.  Bringing Recommendation 7, below, closer to home … it is interesting to note that a very necessary discussion on the technical adequacy of the approach taken to structural performance in fire … in both Technical Guidance Document B (Ireland) and Approved Document B (England & Wales) … has yet not even commenced !

.

2005 NIST WTC RECOMMENDATIONS

GROUP 2.  Enhanced Fire Endurance of Structures

The procedures and practices used to ensure the fire endurance of structures should be enhanced by improving the technical basis for construction classifications and fire resistance ratings, improving the technical basis for standard fire resistance testing methods, use of the ‘structural frame’ approach to fire resistance ratings, and developing in-service performance requirements and conformance criteria for sprayed fire resisting materials.

NIST WTC Recommendation 4.

NIST recommends evaluating, and where needed improving, the technical basis for determining appropriate construction classifications and fire rating requirements (especially for tall buildings) – and making related code changes now, as much as possible – by explicitly considering factors including: *

[ * F-23  The construction classification and fire rating requirements should be risk-consistent with respect to the design-basis hazards and the consequences of those hazards.  The fire rating requirements, which were originally developed based on experience with buildings less than 20 storeys in height, have generally decreased over the past 80 years since historical fire data for buildings suggest considerable conservatism in those requirements.  For tall buildings, the likely consequences of a given threat to an occupant on the upper floors are more severe than the consequences to an occupant on the first floor or the lower floors.  For example, with non-functioning elevators, both of the time requirements are much greater for full building evacuation from upper floors and emergency responder access to those floors.  It is not clear how the current height and areas tables in building codes consider the technical basis for the progressively increasing risk to an occupant on the upper floors of tall buildings that are much greater than 20 storeys in height.]

  • timely access by emergency responders and full evacuation of occupants, or the time required for burnout without partial collapse ;
  • the extent to which redundancy in active fire protection systems (sprinklers and standpipe, fire alarm, and smoke management) should be credited for occupant life safety ; *

[ * F-24  Occupant life safety, prevention of fire spread, and structural integrity are considered separate safety objectives.]

  • the need for redundancy in fire protection systems that are critical to structural integrity ; *

[ * F-25  The passive fire protection system (including fire protection insulation, compartmentation, and fire stopping) and the active sprinkler system each provide redundancy for maintaining structural integrity in a building fire, should one of the systems fail to perform its intended function.]

  • the ability of the structure and local floor systems to withstand a maximum credible fire scenario* without collapse, recognizing that sprinklers could be compromised, not operational, or non-existent ;

[ * F-26  A maximum credible fire scenario includes conditions that are severe, but reasonable to anticipate, conditions related to building construction, occupancy, fire loads, ignition sources, compartment geometry, fire control methods, etc., as well as adverse, but reasonable to anticipate operating conditions.]

  • compartmentation requirements (e.g. 1,200 sq.m *) to protect the structure, including fire rated doorsets and automatic enclosures, and limiting air supply (e.g. thermally resisting window assemblies) to retard fire spread in buildings with large, open floor plans ;

[ * F-27  Or a more appropriate limit, which represents a reasonable area for active fire fighting operations.]

  • the effect of spaces containing unusually large fuel concentrations for the expected occupancy of the building ;   and
  • the extent to which fire control systems, including suppression by automatic or manual means, should be credited as part of the prevention of fire spread.

Adoption of this Recommendation will allow building codes to distinguish the risks associated with different building heights, fuel concentrations, and fire protection systems.  Research is needed to develop the data and evaluate alternative proposals for construction classifications and fire ratings.  Model Building Codes:  A comprehensive review of current construction classifications and fire rating requirements and the establishment of a uniform set of revised thresholds with a firm technical basis that considers the factors identified above should be undertaken.*

[ * F-28  The National Fire Protection Association (NFPA) 5000 model code and the International Building Code (IBC) both recognize the risks associated with different building heights and accepted changes in 2001 and 2004, respectively.  Both model codes now require that buildings 126 metres and higher have a minimum 4 hour structural fire resistance rating.  The previous requirement was 2 hours.  The change provides increased fire resistance for the structural system leading to enhanced tenability of the structure and gives firefighters additional protection while fighting a fire.  While NIST supports these changes as an interim step, NIST believes that it is essential to complete a comprehensive review that will establish a firm technical basis for construction classifications and fire rating requirements.]

NIST WTC Recommendation 5.

NIST recommends that the technical basis for the century-old standard for fire resistance testing of components, assemblies and systems be improved through a national effort.  Necessary guidance also should be developed for extrapolating the results of tested assemblies to prototypical building systems.  A key step in fulfilling this Recommendation is to establish a capability for studying and testing components, assemblies, and systems under realistic fire and load conditions.

This effort should address the technical issues listed below: *

[ * F-29  The technical issues were identified from the series of four fire resistance tests of the WTC Floor system, and the review and analysis of relevant documents that were conducted as part of this Investigation.]

a.     Criteria and test methods for determining:

  • structural limit states, including failure, and means for measurement ;
  • effect of scale of test assembly versus prototype application, especially for long-span structures that significantly exceed the size of test furnaces ;
  • effect of restraining thermal expansion (end-restraint conditions) on test results, especially for long-span structures that have greater flexibility ;
  • fire resistance of structural connections, especially the fire protection required for a loaded connection to achieve a specified rating ; *

[ * F-30  There is a lack of test data on the fire resistance ratings of loaded connections.  The fire resistance of structural connections is not rated in current practice.  Also, standards and codes do not provide guidance on fire protection requirements for structural connections when the connected members have different fire resistance ratings.]

  • effect of the combination of loading and exposure (time-temperature profile) required to adequately represent expected conditions ;
  • the repeatability and reproducibility of test results (typically, results from a single test are used to determine the rating for a component or assembly) ;   and
  • realistic ratings for structural assemblies made with materials that have improved elevated temperature properties (strength, modulus, creep behaviour).

b.     Improved procedures and guidance to analyze and evaluate existing data from fire resistance tests of building components and assemblies for use in qualifying an untested building element.

c.     Relationships between prescriptive ratings and performance of the assembly in real fires.

Affected National and International Standards: * ASTM E 119, NFPA 251, UL 263, and ISO 834.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

[ * F-31  While the NIST Recommendations are focused mainly on U.S. national standards, each U.S. standard has counterpart international standards.  In a recent report (ISO/TMB AGS N 46), the International Organization for Standardization (ISO), through its Advisory Group for Security (AGS), has recommended that since many of the ISO standards for the design of buildings date back to the 1980’s, they should be reviewed and updated to make use of the studies done by NIST on the World Trade Center disaster, the applicability of new technology for rescue from high buildings, natural disasters, etc.  ISO’s Technical Advisory Group 8 co-ordinates standards work for buildings.]

NIST WTC Recommendation 6.

NIST recommends the development of criteria, test methods, and standards:  (1) for the in-service performance of Sprayed Fire Resisting Materials (SFRM, also commonly referred to as fire protection insulation) used to protect structural components;  and (2) to ensure that these materials, as installed, conform to conditions in tests used to establish the fire resistance rating of components, assemblies, and systems.

This should include:

  • Improved criteria and testing methodologies for the performance and durability of SFRM (e.g. adhesion, cohesion, abrasion, and impact resistance) under in-service exposure conditions (e.g. temperature, humidity, vibration, impact, with/without primer paint on steel*) for use in acceptance and quality control.  The current test method to measure the bond strength, for example, does not distinguish the cohesive strength from the tensile and shear adhesive strengths.  Nor does it consider the effect of primer paint on the steel surface.  Test requirements that explicitly consider the effects of abrasion, vibration, shock, and impact under normal service conditions are limited or do not exist.  Also, the effects of elevated temperatures on thermal properties and bond strength are not considered in evaluating the performance and durability of SFRM.

[ * F-32  NIST tests show that the adhesive strength of SFRM on steel coated with primer paint was a third to half of the adhesive strength on steel that had not been coated with primer paint.  The SFRM products used in the WTC towers were applied to steel components coated with primer paint.]

  • Inspection procedures, including measurement techniques and practical conformance criteria, for SFRM in both the building codes and fire codes for use after installation, renovation, or modification of all mechanical and electrical systems and by fire inspectors over the life of the building.  Existing standards of practice (AIA MasterSpec and AWCI Standard 12), often required by codes for some buildings need to be broadly applied to both new and existing buildings.  These standards may require improvements to address the issues identified in this Recommendation.
  • Criteria for determining the effective uniform SFRM thickness – thermally equivalent to the variable thickness of the product as it is actually applied – that can be used to ensure that the product in the field conforms to the near uniform thickness conditions in the tests used to establish the fire resistance rating of the component, assembly, or system.  Such criteria are needed to ensure that the SFRM, as installed, will provide the intended performance.
  • Methods for predicting the effectiveness of SFRM insulation as a function of its properties, the application characteristics, and the duration and intensity of the fire.
  • Methods for predicting service life performance of SFRM under in-service conditions.

Affected Standards:  AIA MasterSpec and AWCI Standard 12 for field inspection and conformance criteria; ASTM standards for SFRM performance criteria and test methods.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.  (See Recommendation 10 for more on this issue.)

NIST WTC Recommendation 7.

NIST recommends the adoption and use of the ‘structural frame’ approach to fire resistance ratings.  This approach requires that structural members – such as girders, beams, trusses, and spandrels having direct connection to the columns, and bracing members designed to carry gravity loads – be fire protected to the same fire resistance rating as columns.  This approach is currently required by the International Building Code (IBC), one of the model codes, and is in the process of adoption by NFPA 5000, the other model code.  This requirement ensures consistency in the fire protection provided to all of the structural elements that contribute to overall structural stability.*  State and local jurisdictions should adopt and enforce this requirement.

[ * F-33  Had this requirement been adopted by the 1968 New York City building code, the WTC floor system, including its connections, would have had the 3 hour rating required for the columns since the floors braced the columns.]

.

.

END

Sustainable Fire Engineering – IABSE Lecture 1 December 2011

2011-11-14 …

On Thursday evening, 1st December 2011, at 19.00 hrs … in the Dublin Institute of Technology … I will present an IABSE-Ireland Sponsored Lecture on the subject: ‘Sustainable Fire Engineering IS THE FUTURE !’.

This Presentation has been in continuous development across a snaking international path … Dubayy (UAE) in 2008 … Lund (Sweden) and Bengaluru (India) in 2009 … Dilli (India), Zurich (Switzerland) and Dublin (Ireland) in 2010 … Paris (France), the IFE’s International Fire Conference in Cardiff (Wales) and the ASFP-Ireland Fire Seminar in 2011 … and on 1 December next, in Dublin, I will be introducing some tough new realities for fire engineering generally … not just in Ireland …

Colour photograph showing the impact of witnessing the 9-11 WTC Incident in New York. Sustainable Fire Engineering must be 'reliability-based' & 'person-centred'. But ... do building designers, including fire engineers, actually understand that the people who use their buildings are 'individuals' ... each having a different range of abilities ? Photograph by Marty Lederhandler/AP. Click to enlarge.
Colour photograph showing the impact of witnessing the 9-11 WTC Incident in New York. Sustainable Fire Engineering must be 'reliability-based' & 'person-centred'. But ... do building designers, including fire engineers, actually understand that the people who use their buildings are 'individuals' ... each having a different range of abilities ? Photograph by Marty Lederhandler/AP. Click to enlarge.

.

IABSE Irish National Group Sponsored Lecture

Dublin Institute of Technology, Bolton Street – Michael O’Donnell Room (259)

Thursday, 1 December 2011 @ 19.00 hrs / 7.00 p.m.

CJ Walsh: Sustainable Fire Engineering IS THE FUTURE !  (Lecture Flyer, PDF File, 259 kb)

.

The aim of Sustainable Fire Engineering is to realize a safe and sustainable built environment.

Responding ethically, in built and/or wrought form, to the still evolving concept of sustainable human and social development … a principal objective of Sustainable Fire Engineering is to design for maximum credible fire and user scenarios … in order to maintain a proper and satisfactory level of fire safety and protection over the full life cycle of, for example, a building … and for a Sustainable Building, that life cycle is 100 years minimum.

Sustainable Fire Engineering must, therefore, be ‘reliability-based’ & ‘person-centred’.

This presentation will examine the authentic language and meaning of sustainability … and will then track how this impacts on the professional practice of fire engineering.  Special mention will be made of Fire-Induced Progressive Collapse.

.

See you all there !   And I will be looking forward to a lot of challenging feedback on the night !!

.

.

END