NIST NCSTAR 1

Grenfell Inquiry Recommendations (1) – Vulnerable People

2019-11-11:  Kensington and Chelsea’s wilful disdain for the Health, Safety and Welfare of ALL the residents within its functional area … and knowing neglect of its legal and ethical Duty of Care towards ALL … resulted in a significant number of people with activity limitations living high up in Grenfell Tower prior to June 2017 … in spite of the now incontrovertible fact that, in the event of a fire emergency, many would be left behind … to die.

‘All human beings are born free and equal in dignity and rights.’

Article 1, 1948 Universal Declaration of Human Rights

Colour photograph showing a Firefighter watching the horrific fatal fire scene at Grenfell Tower in London, on 14 June 2017, from a nearby balcony.  Click to enlarge.

London Fire Brigade was an easy target for the Grenfell Fire Inquiry’s Phase 1 Report, made all the more so following some careless, insensitive and ignorant public comments by its Commissioner, Dany Cotton.  However, we must clearly distinguish between the behaviour of LFB’s Frontline Firefighters, who were brave and dedicated despite inadequate training, and lack of proper equipment, back-up resources and personnel strength … and LFB’s Senior Commanders … which is another matter.

Colour photograph showing the London Fire Brigade (LFB) Commissioner, Dany Cotton.  In order to ensure that transformation of the LFB actually takes place in the short term, and is fully effective, Dany Cotton and all of her Senior Commanders must resign now, or be fired !  Click to enlarge.

In England … there is widespread indifference, and some rabid resistance, to answering the desperate needs, and mitigating the agonizing plight, of Vulnerable Building Users during fire emergencies … which includes people with activity limitations, children under 5 years of age, frail older people (not All older people !), women in late stage pregnancy, people with disabilities, refugees, migrants, the poor, and people who do not understand the local culture or cannot speak the local language.  British National Standard B.S.9999 (not solely those sections previously contained in B.S.5588:Part 8) and England’s National Building Regulations – Approved Document B: ‘Fire Safety’ – offer only token, i.e. inadequate, protection for vulnerable people in fire emergencies.  When a senior representative of BSI, the British Standards Institution, was directly approached by me, and requested to open up B.S.9999 for meaningful updating … the answer was a firm “NO” !  The same attitude is deep-seated among fire research organizations in the country, and among people who develop computer fire evacuation models.

Presentation Overhead, in colour, showing the ‘Fire Safety for All’ Matrix, which outlines the scope of its application in the Human Environment and the different social groups to be targeted.  Balanced consideration must be given to people who use wheelchairs (physical function impairment) … and to people with visual, hearing, psychological, and mental/cognitive impairments … and to other vulnerable building users, e.g. people with health conditions.  Click to enlarge.  Matrix developed by CJ Walsh.

Presentation Overhead showing the definition of ‘people with activity limitations’, with its equivalent French translation … also showing from where this term is derived … and who this term includes.  During a fire emergency, confused and/or confusing disability-related language costs lives !  Click to enlarge.

.

Grenfell Fire Inquiry’s Phase 1 Recommendations – Chapter #33

After hearing the first media reports about the tough Recommendations aimed at London Fire Brigade, I had naturally expected that the other Phase 1 Recommendations would be equally as tough.  But NO … they are far from comprehensive … they are fragmentary, lack depth and any sort of coherence.  Specifically with regard to Vulnerable Building Users, the Recommendations are pathetically and disgracefully inadequate !

And in case there is any doubt, the status quo in England – and to be fair, in many other countries as well – is entirely unacceptable !!

Few people realize that the fire safety objectives in current fire regulations/codes are limited and constrained.  To implement changes to the flawed regulations in England, it will take many years … and, based on recent past history, implementation will be incomplete and unsatisfactory.  Residents in high-rise buildings, whether public or private, must no longer wait in vain for this to happen.  Instead, the time has arrived to become proactive, and to immediately initiate their own comprehensive programmes of Self-Protection In Case Of Fire … which go far and beyond the pathetic Recommendations in Moore-Bick’s Phase 1 Report.

Fires Similar To Grenfell Tower Are Frequent

[ Paragraph #33.5 ]  … although not unprecedented, fires of the kind that occurred at Grenfell Tower are rare.

[ Response ]  Not true … misleading, and a complete fallacy !

Just since 2010, fires similar to Grenfell Tower have occurred in South Korea, many in the United Arab Emirates, France, Chechnya, Australia, Azerbaijan, Russia, and most recently in Turkey.  Each one of these fires has been recorded and illustrated on our Twitter Account: @sfe2016dublin.  Seeing, and understanding, this striking pattern of unusual fire behaviour … a competent person would react and plan accordingly.

Effective Fire Compartmentation Is A Delusion

[ Paragraph #33.5 ]  Effective compartmentation is likely to remain at the heart of fire safety strategy and will probably continue to provide a safe basis for responding to the vast majority of fires in high-rise buildings.

[ Response ]  Not true … demonstrates a fundamental flaw in European fire safety strategizing !

In an environment of lax or non-existent compliance monitoring … the quality of architectural/fire engineering design and the reliability of related-construction will both, inevitably, be poor and unacceptable.  Fire loads in today’s residential buildings are also far higher than a generation ago, for example, because of more electrical/electronic equipment and synthetic furnishings.  And whatever about first-built, i.e. whether it’s good, bad or ugly, later alterations and other construction work will typically compromise the original performance of fire resisting doorsets and service penetration fire sealing.  Modern ‘green’ building materials and construction methods are further aggravating these problems.  A competent person would be aware of fire research at the UL Laboratories, in the U.S.A., which confirmed the above developments.

‘ Rigorous enforcement of building codes and standards by state and local agencies, well trained and managed, is critical in order for standards and codes to ensure the expected level of safety.  Unless they are complied with, the best codes and standards cannot protect occupants, emergency responders, or buildings.’

U.S. National Institute of Standards and Technology.  Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1.  2005.

‘Stay Put’ Policies Are Criminal

[ Paragraph #33.5 ]  However, in the case of some high-rise buildings it will be necessary for building owners and fire and rescue services to provide a greater range of responses, including full or partial evacuation.  Appropriate steps must therefore be taken to enable alternative evacuation strategies to be implemented effectively.

[ Paragraph #33.15 ]  e. that policies be developed for managing a transition from ‘stay put’ to ‘get out’ ;

[ Response ]  Too little … and far too late !

[ Solution ]  Two fatal fires separated in time and space … the 2009 Lakanal House Fire, in London, and the 2017 Marco Polo High-Rise Apartment Building Fire, in Honolulu, continue to clearly demonstrate that effective fire compartmentation is a delusion.  Even if carried out by a competent person … it is not possible to establish with reasonable certainty, by means of a visual/surface building inspection alone, whether or not fire compartmentation is effective in an existing building.  The London and Honolulu buildings were not fitted with any active fire suppression system, e.g. fire sprinklers or a water mist system.

Buildings must remain structurally ‘serviceable’, not merely structurally ‘stable’, for a Required Period of Time.  See the Presentation Overhead below.

Presentation Overhead, in colour, explaining the concept of ‘Structural Reliability’ in fire conditions … and defining ‘Required Period of Time’, during which a building must remain serviceable.  Click to enlarge.

Authorities Having Jurisdiction (AHJ’s), firefighters, client organizations, design teams, and building owners/managers must not, therefore, direct, or even suggest, that any of its building users wait (‘stay put’) in that building during a fire emergency.  A competent person always connects building fire performance with its structural performance, and vice versa … and always learns from the evidence of ‘real’ fatal fires.

All Lifts/Elevators Must Be Used For Fire Evacuation

[ Paragraph #33.13 ]  When the firefighters attended the fire at Grenfell Tower they were unable to operate the mechanism that should have allowed them to take control of the lifts.  Why that was so is not yet known, but it meant that they were unable to make use of the lifts in carrying out firefighting and search and rescue operations.  It also meant that the occupants of the tower were able to make use of the lifts in trying to escape, in some cases with fatal consequences.

[ Response ]  There is a ridiculous assumption in Moore-Bick’s Phase 1 Report that it is only firefighters who use lifts/elevators during a fire emergency, and that it is dangerous for anybody else to use them.

[ Solution ]  In order to adequately protect Vulnerable Building Users in a fire emergency … ALL lifts/elevators in a building must be capable of being used for evacuation during a fire emergency.

Until such time as firefighters arrive at a building fire scene in sufficient strength and are properly prepared to carry out effective firefighting and rescue operations … Firefighter Lifts/Elevators must be used for the fire evacuation of building occupants/users.  Prior liaison and pre-planning with local fire services is always necessary with regard to the use of firefighting lifts/elevators for the evacuation of occupants/users.

Colour photograph showing a typical sign outside most lifts/elevators around the world … ‘In The Event of Fire, Do Not Use Lift’.  This is a pre-historic dinosaur of a policy which places Vulnerable Buildings Users in immediate and very serious danger during a fire emergency.  Click to enlarge.

A fundamental principle of fire safety design is that there must be alternative, safe and accessible evacuation routes away from the scene of a fire, which can occur in any part of a building during its life cycle ;  these evacuation routes must be capable of being used by all building users, including people with activity limitations.

This is why there must always be at least 2 Fire Evacuation Staircases in High-Rise Residential Buildings !

The location of lifts/elevators and lobbies, within peripheral building cores, must always be considered in relation to the position of adjacent fire protected evacuation staircases, which must be easily found by building occupants/users, and the areas of rescue assistance adjoining those staircases.

To be used for fire evacuation, a lift/elevator must be ‘fit for its intended use’, must operate reliably during a fire emergency, and must comprise a complete building assembly which meets specific performance criteria.

A Lift/Elevator Fire Evacuation Assembly is an essential aggregation of building components arranged together – comprising a lift/elevator, its operating machinery, a hard-construction vertical shaft enclosure, and on every floor served by the lift/elevator a sufficiently large, constantly monitored lobby for people to wait in safety and with confidence, all robustly and reliably protected from heat, smoke, flame and structural collapse during and after a fire – for the purpose of facilitating the safe evacuation of building occupants/users throughout the duration of a fire emergency.

If a building is located in a Seismic Zone, Lift/Elevator Fire Evacuation Assemblies which can safely operate during an earthquake must always be specified and installed.

Gravity Evacuation Chair Devices, which are not electrically-powered and operate by gravity, facilitate downward movement, only, on straight flights of stairs.  Having descended a staircase, with the user having left his/her wheelchair behind, these devices are not fully stable when travelling the long horizontal distances necessary to reach an external ‘place of safety’ remote from a building, perhaps over rough terrain.

Colour photograph showing a Gravity Evacuation Chair and how it is used during a fire emergency.  Click to enlarge.

If lifts/elevators in existing buildings undergo a major overhaul, or if they are replaced, they should then be made capable of use for fire evacuation.

Lifts/elevators used for fire evacuation must always have a fire protected electrical supply which is separate from the main building electrical supply, in order to ensure that they can continue to operate without interruption during a fire emergency.

In addition to conventional passive fire protection measures, Lift/Elevator Lobbies must also be protected by an active fire suppression system.  Water mist is the preferred fire suppression medium, because it is user-friendly, will not greatly interfere with user visibility, uses far less water compared to water sprinklers, and is also climate-friendly.  Furthermore, because people with activity limitations will be waiting for evacuation in lift/elevator lobbies, building designers and managers must ensure that these lobbies are properly fitted out with appropriate fire safety equipment, facilitation aids, smoke hoods, signage and communications, etc., etc.

Proper Use of Personal Emergency Evacuation Plans (PEEP’s)

[ Paragraph #33.22 ]  f. that the owner and manager of every high-rise residential building be required by law to include up-to-date information about persons with reduced mobility and their associated PEEP’s in the premises information box ;

[ Response ]  There is No Recommendation or explanation in Moore-Bick’s Inquiry Phase 1 Report concerning the ‘what’, ‘why’ or ‘how’ of PEEP’s.

[ Solution ]  A Personal Emergency Evacuation Plan is a person-specific and location-specific document, and is an integral part of the overall Fire Emergency Management Plan for a building.  It is intended for regular occupants/users who may be vulnerable in an emergency situation, i.e. those with limited abilities in relation to self-protection, independent evacuation to an external place of safety remote from the building, and active participation in the building’s fire emergency procedures.

In new buildings, which are effectively accessible (including fire safe) for all, Personal Emergency Evacuation Plans are not necessary.

In existing buildings, Personal Emergency Evacuation Plans must not be used to limit or restrict access by an individual to any part of a building and its facilities.  To ensure this, sufficient accessibility works must be carried out and appropriate management procedures put in place.

In buildings of historical, architectural and cultural importance, where the historical, architectural or cultural integrity of the building must be protected, Personal Emergency Evacuation Plans may limit or restrict access to parts of a building and some of its facilities.  Refer to the ICOMOS 1964 International Charter for the Conservation and Restoration of Monuments and Sites.

High-Rise & Tall Buildings: Floors Of Temporary Refuge & Minimum Staircase Widths

There are No Recommendations in Moore-Bick’s Inquiry Phase 1 Report concerning these critical issues.

[ Solution ]  There are many fire safety problems associated with high-rise and tall buildings.  Evacuation by staircases alone can take many hours ;  the physical exertion involved in descending even 10 floors/storeys by staircase is too much for many able-bodied people and is impossible for most vulnerable building occupants/users, particularly people with activity limitations.  Passive fire protection of staircases, alone and/or supplemented by pressurization to prevent smoke ingress, is far too unreliable.  And heavily equipped firefighters cannot be expected to ascend more than 10 floors/storeys by staircase before carrying out arduous firefighting and search/rescue operations.  Furthermore, uninterrupted lift/elevator shafts, extending throughout the full height of a tall building, pose a significant risk of uncontrolled fire spread.

Colour photograph showing the very narrow, single staircase in the Grenfell Tower, London.  How anybody – ANYBODY – could ever imagine that this staircase would be adequate to serve the fire evacuation needs of a diverse occupant population in a high-rise residential building is beyond belief !  A Syndrome is a cluster of symptoms which occur together and can be taken as indicative of a particular design abnormality.  Click to enlarge.

Presentation Overhead, in colour, illustrating a sufficiently wide fire evacuation staircase … minimum width 1.5m between handrails … which will accommodate Contraflow and the Assisted Evacuation of people in wheelchairs … with a sufficiently large, directly adjoining Area of Rescue Assistance … which will accommodate people unable to independently evacuate during a fire emergency.  The space provided in an Area of Rescue Assistance, on each floor/storey, is calculated in relation to the design occupant/user population of a building.  Even if a building is fully sprinklered, an Area of Rescue Assistance must adjoin every fire evacuation staircase.  Click to enlarge.  Staircase design by CJ Walsh.

A Floor of Temporary Refuge is an open, structurally robust floor/storey in a tall building – having an exceptionally low level of fire hazard and risk, ‘intelligently’ fitted with a suitable user-friendly and climate-friendly fire suppression system, e.g. water mist, and serviced by sufficient accessible, fire protected lifts/elevators capable of being used for evacuation during a fire emergency ;  it is designed and constructed to halt the spread of heat, smoke and flame beyond that floor/storey, and is intended as a place of temporary respite, rest and relative safety for building users before continuing with evacuation, and as a forward command and control base for firefighters.

In a high-rise, tall, super-tall or mega-tall building, every 20th floor must be a Floor of Temporary Refuge, even if the building is co-joined with another building, or there are sky bridges linking the building with one or more other buildings.

Special provision must be made, on these floors, for accommodating large numbers of building occupants/users with activity limitations … and because people will be waiting on Floors of Temporary Refuge, perhaps for extended periods of time, building designers and managers must ensure that these floors/storeys are properly fitted out with appropriate fire safety equipment, facilitation aids, smoke hoods, signage and communications, etc., etc.

Presentation Overhead, in colour, illustrating and explaining the design concept of Floors of Temporary Refuge.  Click to enlarge.

.

Conclusion: Fire Engineering Capacity in England is Lacking

In England … the very important 2005 and 2008 U.S. NIST Recommendations following the 9-11 (2001) Attacks on the World Trade Center, in New York City, were completely ignored.  Following the 2009 Lakanal House Fire, in London, the 2013 Coroner’s Recommendations were only partially implemented.

With regard to Vulnerable Building Users … there is NO capacity within the English Fire Establishment, including the National Fire Chiefs Council (NFCC), English Authorities Having Jurisdiction (AHJ’s), and its Building Design and Fire Engineering Communities … to properly respond to … never mind understand … the Fire Safety, Protection and Evacuation for ALL in Buildings.

Avoiding responsibility and pointing fingers at other Organizations appear to be the initial reactions to Moore-Bick’s Phase 1 Recommendations so far.  Refer, for example, to the NFCC Statement, dated 30 October 2019 … https://www.nationalfirechiefs.org.uk/News/nfcc-responds-to-grenfell-phase-1-report

.

.

END

#GrenfellTowerFire #FireSafety4ALL #NobodyLeftBehind #VulnerableBuildingUsers #PwAL #PwD #NeverStayPut #Firefighters #FFsafety #2019GrenfellRecommendations #SFE #GrenfellTowerFireInquiry #LondonFireBrigade #DanyCotton #FireResistingDoorsets #FireCompartmentation #FireEvacuation #MooreBick #FireEngineering #England #Design #Management #HighRiseResidentialBuilding #UDHR #HumanRights

.

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

‘Fire-Induced Progressive Collapse’ – A Term Born To Confuse ?

2012-03-26:  Let me lay out the problem this way … recently, after further developing and refining the definition of the term …

‘ The sequential growth and intensification of structural deformation and displacement, beyond fire engineering design parameters, and the eventual failure of elements of construction in a building – during a fire and the ‘cooling phase’ afterwards – which, if unchecked, will result in disproportionate damage, and may lead to total building collapse ‘

… our attention, in CIB W14’s Research Working Group IV, automatically turned towards the term itself.  It didn’t sound right … it didn’t look right … and a lot of people in North America are still completely confused.

Was there anything we could do to clarify the situation ?

.

BACKGROUND

The long delay in incorporating the Recommendations of the following 2 Reports …

  • NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1.  Gaithersburg, MD, USA.

and

  • NIST (National Institute of Standards and Technology).  August 2008.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of World Trade Center Building 7.  NIST NCSTAR 1A.  Gaithersburg, MD, USA.

… into building and fire codes/regulations, standards and administrative provisions at international, regional and national levels … can partly be explained by institutional inertia and the stubborn resistance of vested interests in the construction sector.  To be fair, however, although both NIST Reports made extensive reference to the term ‘Fire-Induced Progressive Collapse’ … the structural concept was not defined, or elaborated, in either document.  This was not really a task for NIST.

.

WHO IS CONFUSED ?

Since the publication of the 2005 NIST Report above, there has been much confusion about the term ‘Fire-Induced Progressive Collapse’.

Refer, for example, to the Introduction – Paragraph 1.1 on Page 1 – from NIST Document: ‘Best Practices for Reducing the Potential for Progressive Collapse in Buildings’ (NISTIR 7396 – February 2007) … where a lot of people, who should know better, really screwed up … and got it so wrong …

” The term ‘progressive collapse’ has been used to describe the spread of an initial local failure in a manner analogous to a chain reaction that leads to partial or total collapse of a building.  The underlying characteristic of progressive collapse is that the final state of failure is disproportionately greater than the failure that initiated the collapse.  ASCE Standard 7-05 defines progressive collapse as ‘the spread of an initial local failure from element to element resulting, eventually, in the collapse of an entire structure or a disproportionately large part of it’ (ASCE 2005).  The disproportionality refers to the situation in which failure of one member causes a major collapse, with a magnitude disproportionate to the initial event. Thus, ‘progressive collapse’ is an incremental type of failure wherein the total damage is out of proportion to the initial cause.  In some countries, the term ‘disproportionate collapse’ is used to describe this type of failure.

Based on the above description, it is proposed that the professional community adopt the following definition, which is based largely on ASCE 7-05:

progressive collapse – the spread of local damage, from an initiating event, from element to element resulting, eventually, in the collapse of an entire structure or a disproportionately large part of it; also known as disproportionate collapse.

The concept of progressive collapse can be illustrated by the famous 1968 collapse of the Ronan Point apartment building (Fig. 1-1). “

.

Colour photograph showing World Trade Center Building No. 7 in ruins after 9-11 in New York City ... when Fire-Induced Progressive Damage led to Disproportionate Damage, and finally to total building failure ... a Collapse Level Event (CLE). Click to enlarge.

Colour photograph showing World Trade Center Building No. 7 in ruins after 9-11 in New York City ... when Fire-Induced Progressive Damage led to Disproportionate Damage, and finally to total building failure ... a Collapse Level Event (CLE). Click to enlarge.

.

WE NOW KNOW

Fire-Induced Progressive Damage in Buildings is distinguished from Disproportionate Damage – a related but different structural concept – by the mode of damage initiation, not the final condition of building failure.  Until this phenomenon is properly understood, and unless it is impeded, or resisted, by building design … Fire-Induced Progressive Damage will result in Disproportionate Damage … and may lead to a Collapse Level Event (CLE), which is entirely unacceptable to the general population of any community or society.

So … if unchecked, Fire-Induced Progressive Damage will lead to Disproportionate Damage.

BUT … while it may happen … which it did, when WTC Building 7 failed completely at approximately 17.21 hrs (local time) on the afternoon of 11 September 2001 in New York City … it is not necessarily always the case that Fire-Induced Progressive Damage and Disproportionate Damage will lead to Total Collapse.

.

OUR SOLUTION

In order to avoid the wide confusion which the term ‘Fire-Induced Progressive Collapse’ is continuing to cause at international level … the preferred term is now Fire-Induced Progressive Damage.

.

.

END

Enhanced by Zemanta

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

2012 Review of Part B & TGD B – Irish Building Regulations

2012-03-02:  Please bear with me while I update you at the start of this post … rather than at the end, which would be more usual here … and logical.

[ In Ireland … a related problem, which continues to fester and cause a great nuisance in an everyday work environment … concerns the lack of proper, i.e. formal, recognition of electronic communications, and information in an electronic format, by public and private organizations … in spite of the following very clear legal text …

2000 Electronic Commerce Act (No. 27 of 2000)

Section 9 – Electronic Form not to Affect Legal Validity or Enforceability

Information (including information incorporated by reference) shall not be denied legal effect, validity or enforceability solely on the grounds that it is wholly or partly in electronic form, whether as an electronic communication or otherwise. ]

.

Yesterday afternoon (1 March 2012), we received the following e-mail communication from the Department of Environment, Community & Local Government (DECLG)

Folks,

Could you please send me your submissions in either Microsoft Word or Excel as it it easier to copy and paste into the format that is required , it is proving rather difficult to copy from a PDF document.

Thank You

Claire Darragh, Architecture / Building Standards, DECLG.

.

I immediately replied …

Dear Claire,

Further to your informal e-mail message, which we received just a short while ago …

Please note that this is not an acknowledgement that the FireOx International Submission was received by the Department … and we certainly do not wish that you copy and paste anything relating to its contents anywhere else.

IF this is a Proper Public Consultation Process … you must adapt internal DECLG systems to suit the Submissions !   We will be communicating with the Minister’s Office concerning this issue.

Once again, I would ask you to properly acknowledge receipt of our Submission, dated 2012-02-14.

.

In connection with the original FireOx International Submission … I would also like to take this opportunity to advise you that:

  • Due to an error in ISO (International Standards Organization) … the publication of ISO 21542: ‘Building Construction – Accessibility and Usability of the Built Environment’, on 12 December 2011, was not notified to people directly involved in its development and drafting, or to the participating national standards organizations ; 

and

  • In order to avoid the wide confusion which the term ‘Fire-Induced Progressive Collapse’ is continuing to cause at international level … the preferred term is now Fire-Induced Progressive Damage.

.

I have amended our Submission accordingly.

Kind regards.

C. J. Walsh, FireOx International – Ireland, Italy & Turkey.

.

.

2012-02-18:  The following is the text of  FireOx International’s Submission, dated 14 February 2012, to the Department of the Environment, Community & Local Government (DECLG) in Dublin … concerning the current review of the Irish Building Regulations Part B & TGD B … including, for good measure, some initial and very pertinent comments on the Irish Building Control Regulations.

None of these comments will come as any surprise to regular visitors here.

It should also be noted that the same comments are just as relevant in the case of the British (England & Wales) Building Regulations, Part B and Approved Document (AD) B !

.

Ms. Claire Darragh, Architecture & Building Standards Section, DECLG.

Dear Claire,

Thank you for this opportunity to advise the Department on some urgent and necessary improvements to Part B: ‘Fire Safety’ of the 2nd Schedule to the Building Regulations in Ireland … and its supporting Technical Guidance Document (TGD) B.

1.  Some Initial Comments

  • The continuing debacle of the Priory Hall Apartment Complex, in Donaghmede Dublin 13, is just the tip of a very large iceberg in Ireland.  Yet, when we now hear that there will be a ‘risk-based’ approach to Septic Tank Inspections, instead of an approach which involves inspecting all septic tanks … independently, competently and thoroughly … it is clear that the Minister, and senior officials in his Department, have failed to learn any lessons from ‘Priory Hall’.

What was happening on Irish construction sites during the Celtic Tiger boom years … has been happening for twenty years all over the country … more precisely, since the introduction of legal national building regulations in 1991, with NO effective building control … and, before that again, in those parts of the country outside of the major urban areas having legal building bye-laws AND effective building control, i.e. mandatory inspections by competent local authority personnel at the foundation level and drainage level of ALL projects … and, depending on the type of project, occasional or frequent inspections above ground level.

Over the years, local authority officials who carried out building bye-law inspections accumulated a considerable wealth of knowledge and understanding about local construction conditions and practices.  This valuable resource, widely used by the construction industry at the time, has now been diluted and discarded.

PLEASE LEARN THE LESSONS FROM ‘PRIORY HALL’ !!

In connection with ALL Applications for Fire Safety Certificates (Part B) and Disability Access Certificates (Part M) … competent and thorough inspections must, from now on, be carried out by local authority personnel to confirm proper implementation of Part B & M, respectively, of the 2nd Schedule to the Building Regulations.

Furthermore … while on site, local authority personnel must not be discouraged, or restricted, from dealing with any other Parts of the 2nd Schedule to the Building Regulations.  Under the present dysfunctional system, important horizontal linkages between different Parts of the 2nd Schedule are being widely disregarded and ignored, e.g. between Parts B & D, between Parts B & M, and between Parts B & A … or between Parts M & D, etc., etc !

  • European Union (EU) Council Directive 89/106/EEC has been repealed … and, instead, we now have EU Regulation No 305/2011 of the European Parliament and of the Council, of 9 March 2011, laying down Harmonised Conditions for the Marketing of Construction Products.

Unlike the earlier EU Directive … this Regulation, applicable in all EU Member States, is binding in its entirety.

And although Annex I of EU Regulation 305/2011 will enter into force from 1 July 2013 … the Department should now prepare for, and slowly begin the process of, incorporating all of the Annex I Basic Requirements for Construction Works into the 2nd Schedule of the Irish Building Regulations.

SEE BELOW …

.

2.  Firefighter Safety

Fully consistent with Basic Requirement for Construction Works 2(e), in Annex I of EU Regulation No. 305/2011 … Revise Part B Requirement 5 to read as follows …

B5  Firefighter Safety, and Access and Facilities for the Fire Service

A building shall be so designed and constructed that the safety of firefighters is adequately considered and, in the event of an outbreak of fire, that there is adequate provision for access for fire appliances and such other facilities as may be required to assist the fire service in the protection of life and property.

Two examples of issues which should be highlighted in a relevant revision/addition to TGD B’s Guidance Text:

  • The incorporation, in building designs, of alternative safe means of approach towards the scene of a fire by firefighters ;
  • The provision of wider staircases in buildings in order to facilitate the recovery of an injured/impaired firefighter during the course of firefighting operations.

.

3.  Protection of Vulnerable Building Users from Fire

The European Union ratified the United Nations Convention on the Rights of Persons with Disabilities (CRPD) on 23 December 2010.  Ireland has not yet ratified the Convention.

However … fully consistent with Ireland’s legal obligation, under Article 4.3 of the Treaty on European Union (TEU), to co-operate fully with EU Institutions in their implementation of this UN Convention … Revise Part B Requirement 1 to read as follows …

B1  Means of Evacuation in the Event of an Outbreak of Fire

A building shall be so designed and constructed that the protection of vulnerable building users is adequately considered and, in the event of an outbreak of fire, that there are adequate and accessible means of evacuation from the building to a place of safety remote from the building, capable of being safely and effectively used.

[ Use of the word ‘escape’, in the context of emergencies, should be strongly discouraged at all times. ]

Concerning TGD B’s Guidance Text … reference to ISO 21542: ‘Building Construction – Accessibility and Usability of the Built Environment’ will be more than sufficient.

.

Specifically relating to Adequate Protection of Vulnerable Building Users from Fire

NOTE WELL THAT BS 9999 (AND BS 5588:PART EIGHT)  IS (ARE)  ENTIRELY UNFIT FOR PURPOSE !!

Please carefully examine the attached PDF File – My Note for the National Standards Authority of Ireland:  ‘BS 9999:2008 & BS 8300:2009 – Impacts on Accessibility Design in Ireland & Implications for ISO Accessibility & Fire Safety Standards’ , dated June 2009.

.

4.  TGD B’s Appendix A – Performance of Materials and Structures

2 Important Notes should be added to Paragraph A21 – Structural Fire Design

  • In complying with Part B, reference should also be made to Part A of the 2nd Schedule of the Building Regulations, particularly Requirement A3 – Disproportionate Collapse ;

and

  • In order to show that a Fire Protection Material/Product/System for Structural Elements properly complies with Part D … it is also necessary, besides showing that it has been adequately fire tested, to show that the material/product/system is durable over a specified, reasonably long life cycle … and that it can adequately resist mechanical damage during construction of the building and, in the event of an outbreak of fire, during the course of that fire incident.

.

Specifically relating to Steel Structural Performance in Fire

You should be aware that Table A1 and Table A2 are only appropriate for use by designers in the case of single, isolated steel structural elements.

In steel structural frame systems, no consideration is given in the Tables to adequate fire protection of connections … or limiting the thermal expansion (and other types of distortion) in fire of steel structural elements … in order to reduce the adverse effects of one steel element’s behaviour on the rest of the frame and/or adjoining non-loadbearing fire resisting elements of construction.

In the case of steel structural frame systems, therefore, the minimum fire protection to be afforded to ALL steel structural elements, including connections, should be 2 Hours.  Connections should also be designed and constructed to be sufficiently robust during the course of a fire incident.  This one small revision will contribute greatly towards preventing Fire-Induced Progressive Damage in buildings … a related, but different, structural concept to Disproportionate Damage …

Disproportionate Damage

The failure of a building’s structural system  (i) remote from the scene of an isolated overloading action;  and (ii) to an extent which is not in reasonable proportion to that action.

Fire-Induced Progressive Damage

The sequential growth and intensification of structural distortion and displacement, beyond fire engineering design parameters, and the eventual failure of elements of construction in a building – during a fire and the ‘cooling phase’ afterwards – which, if unchecked, will result in disproportionate damage, and may lead to total building collapse.

.

With regard to the above … please carefully examine these 2 Series of Posts on FireOx International’s Technical Blog ( www.cjwalsh.ie ), beginning on the dates indicated …

  • 2011-10-25:  NIST’s (2005) Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30) ;

and

  • 2012-01-18:  Progressive Collapse of WTC 7 – 2008 NIST Recommendations – Part 1 of 2 … GROUP 1. Increased Structural Integrity – Recommendation A … and GROUP 2. Enhanced Fire Endurance of Structures – Recommendations B, C, D & E (out of 13).

.

5.  TGD B’s Appendix F – Reference Standards

Add this Important New Standard …

  • ISO 21542 : 2011     Building Construction – Accessibility and Usability of the Built Environment

.

6.  TGD B’s Appendix G – Reference Publications

Add these Two Important Publications …

  • NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1.  Gaithersburg, MD, USA.

and

  • NIST (National Institute of Standards and Technology).  August 2008.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of World Trade Center Building 7.  NIST NCSTAR 1A.  Gaithersburg, MD, USA.

.

Should you wish to receive further information on any of my comments … please consult FireOx International’s Technical Blog at  www.cjwalsh.ie … or contact me directly.

Please acknowledge receipt of this e-mail communication.

.

Kind regards.

C. J. Walsh, FireOx International – Ireland, Italy & Turkey.

.

.

END

Enhanced by Zemanta

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

NIST WTC Recommendations 8-11 > New Design of Structures

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building CollapsesGROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

.

2011-11-24:  SOME PRELIMINARY COMMENTS …

  1.     The first of two NIST Publications being referenced in this Series of Posts is as follows …

NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1.  Gaithersburg, MD, USA.

The 2005 NIST Report concludes, in Chapter 9, with a list of 30 Recommendations for Action, grouped together under the following 8 Subject Headings

i)        Increased structural integrity ;

ii)       Enhanced fire endurance of structures ;

iii)      New methods for fire resisting design of structures ;

iv)      Enhanced active fire protection ;

v)       Improved building evacuation ;

vi)      Improved emergency response ;

vii)     Improved procedures and practices ;   and

viii)    Education and training.

NIST has clearly stated that “the numerical ordering (of the Recommendations) does not reflect any priority”.

From my point of view, the 2005 NIST Report is especially noteworthy for the emphasis placed on:

(a)     The 3 R’s … Reality – Reliability – Redundancy ;

(b)     Evacuation Way Finding … should be ‘intuitive and obvious’ … a major challenge for building designers, since buildings are still typically designed for ‘access’ only.  In order to find the evacuation routes in a building, it is usually necessary to have a compass, a map, a magnifying glass, a torch … and a prayer book !!!   More about this in later posts …

  2.     However, following on from NIST’s emphasis on Reality … and just between you, me and the World Wide Web … there is a lot of misunderstanding in the International Fire Science and Engineering Community about what exactly is the Realistic End Condition.  But, here it goes …

Realistic End Condition:  A ‘real’ fire in a ‘real’ building, which is used by ‘real’ people with varying abilities in relation to self-protection, independent evacuation to a ‘place of safety’, and participation in the Fire Defence Plan for the building.

It is strange, therefore … and quite unacceptable … to have to point out that the Realistic End Condition IS NOT … a test fire or an experimental fire in a laboratory … or a design fire in a computer model, even IF it is properly validated !

  3.     With regard to Recommendation 8 below … NIST’s contention that “Current methods for determining the fire resistance of structural assemblies do not explicitly specify a performance objective” is not strictly the case.

If we examine Technical Guidance Document B (Ireland) and Approved Document B (England & Wales) once again, as examples close to home … Part B: ‘Fire Safety’ in both jurisdictions should be read in conjunction with its associated Part A: ‘Structure’, which contains a requirement on Disproportionate Damage.

In everyday practice, however, this never happens.  Instead, people dealing with Part B in both jurisdictions enter a sort of bubble … a twilight zone … and, if there is anything to do with structural performance in fire, they immediately refer to the Appendices at the back of both Guidance Documents (ignoring Part A altogether) … where we find a ‘single element’ approach to design, no consideration of connections, etc., etc., etc.

And … this fundamental error is further reinforced in Ireland because, under the national system of Fire Safety Certification for buildings, it is only Part B which is relevant.

At European Level, I would make the same point … under EU Regulation 305/2011 on Construction Products … Basic Requirement for Construction Works 2: ‘Safety in Case of Fire’ must be read in conjunction with Basic Requirement 1: ‘Mechanical Resistance & Stability’ … where we will again find a direct reference to Disproportionate Damage … and an indirect, but explicit, reference to Serviceability Limit States under normal conditions of use … including fire !

A major gap … the missing link at international level … is the failure, still, to elaborate and flesh out the structural concept of Fire-Induced Progressive Collapse.  More about this in later posts …

  4.     With regard to Recommendation 10 below … and amplifying my earlier comments concerning Recommendation 6 … the manufacturers of all Lightweight Structural Fire Protection Systems … not just the Sprayed Systems … have a lot to answer for.

Major question marks concerning Life Cycle Durability, and Resistance to Mechanical Damage at any stage in a building’s life cycle, hang over all of these systems.

Fire testing, alone, does not show that a Lightweight Structural Fire Protection System is ‘fit for its intended use’ !   And manufacturers well know this !!!

And as for the Installation of Lightweight Structural Fire Protection Systems on site … it’s a hornets’ nest that nobody wants to touch !

Vested interests … vested interests … vested interests !!!

.

2005 NIST WTC RECOMMENDATIONS

GROUP 3.  New Methods for Fire Resisting Design of Structures

The procedures and practices used in the fire resisting design of structures should be enhanced by requiring an objective that uncontrolled fires result in burnout without partial or global (total) collapse.  Performance-based methods are an alternative to prescriptive design methods.  This effort should include the development and evaluation of new fire resisting coating materials and technologies, and evaluation of the fire performance of conventional and high-performance structural materials.

NIST WTC Recommendation 8.

NIST recommends that the fire resistance of structures be enhanced by requiring a performance objective that uncontrolled building fires result in burnout without partial or global (total) collapse.  Such a provision should recognize that sprinklers could be compromised, non-operational, or non-existent.  Current methods for determining the fire resistance of structural assemblies do not explicitly specify a performance objective.  The rating resulting from current test methods indicates that the assembly (component or sub-system) continued to support its superimposed load (simulating a maximum load condition) during the test exposure without collapse.  Model Building Codes:  This Recommendation should be included in the national model building codes as an objective, and adopted as an integral pert of the fire resistance design for structures.  The issue of non-operational sprinklers could be addressed using the existing concept of Design Scenario 8 of NFPA 5000, where such compromise is assumed and the result is required to be acceptable to the Authority Having Jurisdiction (AHJ).  Affected Standards:  ASCE-7, AISC Specifications, ACI 318, and ASCE/SFPE 29.

NIST WTC Recommendation 9.

NIST recommends the development of:  (1) performance-based standards and code provisions, as an alternative to current prescriptive design methods, to enable the design and retrofit of structures to resist real building fire conditions, including their ability to achieve the performance objective of burnout without structural or local fire collapse;  and (2) the tools, guidelines, and test methods necessary to evaluate the fire performance of the structure as a whole system.  Standards development organizations, including the American Institute of Steel Construction, have already begun developing performance-based provisions to consider the effects of fire in structural design.

This performance-based capability should include the development of, but not be limited to:

a.     Standard methodology, supported by performance criteria, analytical design tools, and practical design guidance;  related building standards and codes for fire resistance design and retrofit of structures, working through the consensus process for nationwide adoption;  comprehensive design rules and guidelines;  methodology for evaluating thermo-structural performance of structures;  and computational models and analysis procedures for use in routine design practice.

b.     Standard methodology for specifying multi-compartment, multi-floor fire scenarios for use in the design and analysis of structures to resist fires, accounting for building-specific conditions such as geometry, compartmentation, fuel load (e.g. building contents and any flammable fuels such as oil and gas), fire spread, and ventilation;  and methodology for rating the fire resistance of structural systems and barriers under realistic design-basis fire scenarios.

c.     Publicly available computational software to predict the effects of fires in buildings – developed, validated, and maintained through a national effort – for use in the design of fire protection systems and the analysis of building response to fires.  Improvements should include the fire behaviour and contribution of real combustibles;  the performance of openings, including door openings and window breakage, that controls the amount of oxygen available to support the growth and spread of fires and whether the fire is fuel-controlled or ventilation-controlled;  the floor-to-floor flame spread;  the temperature rise in both insulated and un-insulated structural members and fire barriers;  and the structural response of components, sub-systems, and the total building system due to the fire.

d.     Temperature-dependent thermal and mechanical property data for conventional and innovative construction materials.

e.     New test methods, together with associated conformance assessment criteria, to support the performance-based methods for fire resistance design and retrofit of structures.  The performance objective of burnout without collapse will require the development of standard fire exposures that differ from those currently used.

Affected National and International Standards:  ASCE-7, AISC Specifications, ACI 318, and ASCE/SFPE 29 for fire resistance design and retrofit of structures;  NFPA, SFPE, ASCE, and ISO TC92 SC4 for building-specific multi-compartment, multi-floor design basis fire scenarios;  and ASTM, NFPA, UL, and ISO for new test methods.  Model Building Codes:  The performance standards should be adopted as an alternative method in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 10.

NIST recommends the development and evaluation of new fire resisting coating materials, systems, and technologies with significantly enhanced performance and durability to provide protection following major events.  This could include, for example, technologies with improved adhesion, double-layered materials, intumescent coatings, and more energy absorbing SFRM’s.*  Consideration should be given to pre-treatment of structural steel members with some type of mill-applied fire protection to minimize the uncertainties associated with field application and in-use damage.  If such an approach were feasible, only connections and any fire protection damaged during construction and fit-out would need to be field-treated.  Affected Standards:  Technical barriers, if any, to the introduction of new structural fire resisting materials, systems and technologies should be identified and eliminated in the AIA MasterSpec, AWCI Standard 12 and ASTM standards for field inspection, conformance criteria, and test methods.  Model Building Codes:  Technical barriers, if any, to the introduction of new structural fire resisting materials, systems, and technologies should be eliminated from the model building codes.

[ * F-34  Other possibilities include encapsulation of SFRM by highly elastic energy absorbing membranes or commodity grade carbon fibre or other wraps.  The membrane would remain intact under shock, vibration, and impact but may be compromised in a fire, yet allowing the SFRM to perform its thermal insulation function.  The carbon wrap would remain intact under shock, vibration, and impact, and possibly under fire conditions as well.]

NIST WTC Recommendation 11.

NIST recommends that the performance and suitability of advanced structural steels, reinforced and pre-stressed concrete, and other high-performance material systems be evaluated for use under conditions expected in building fires.  This evaluation should consider both presently available and new types of steels, concrete, and high-performance materials to establish the properties (e.g. yield and ultimate strength, modulus, creep behaviour, and failure) that are important for fire resistance, establish needed test protocols and acceptance criteria for such materials and systems, compare the performance of newer systems to conventional systems, and the cost-effectiveness of alternative approaches.  Technical and standards barriers to the introduction and use of such advanced steels, concrete, and other high-performance material systems should be identified and eliminated, or at least minimized, if they are found to exist.  Affected Standards:  AISC Specifications and ACI 318.  Technical barriers, if any, to the introduction of these advanced systems should be eliminated in ASTM E 119, NFPA 251, UL 263, ISO 834.  Model Building Codes:  Technical barriers, if any, to the introduction of these advanced systems should be eliminated from the model building codes.

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Search

 

Follow SFE2016Dublin on Twitter

December 2019
S M T W T F S
« Nov    
1234567
891011121314
15161718192021
22232425262728
293031  

Links