Sustainability of the Human Environment

Sustainable Fire Engineering Design – Targeting & MRV !

2014-04-20:  Traditional/Conventional Fire Engineering Practice is slowly, but inevitably, being transformed … in order to meet the regional and local challenges of rapid urbanization and climate change, the pressing need for a far more efficient and resilient building stock, and a growing social awareness that ‘sustainability’ demands much greater human creativity …

Design Target:  A Safe, Resilient and Sustainable Built Environment for All

Design Key Words:  Reality – Reliability – Redundancy – Resilience

Essential Construction & Occupancy Start-Up Processes:  Careful Monitoring & Reporting – Independent Verification of Performance (MRV)

.

Sustainable Fire Engineering Design Solutions:

Are Reliability-Based …
The design process is based on competence, practical experience, and an understanding of ‘real’ building performance and resilience during Extreme Man-Made Events, e.g. 2001 WTC 9-11 Attack & 2008 Mumbai Hive Attacks, and Hybrid Disasters, e.g. 2011 Fukushima Nuclear Incident … rather than theory alone.

Are Person-Centred …
‘Real’ people are placed at the centre of creative design endeavours and proper consideration is given to their responsible needs … their health, safety, welfare and security … in the Human Environment, which includes the social, built, economic and virtual environments.

Are Adapted to Local Context & Heritage *
Geography, orientation, climate (including change, variability and severity swings), social need, culture, traditions, economy, building crafts and materials, etc., etc.
[* refer to the 2013 UNESCO Hangzhou Declaration]

In Sustainable Design … there are NO Universal Solutions !

Design Objectives:

To protect society, the best interests of the client/client organization and building user health and safety, and to maintain functionality under the dynamic, complex conditions of fire … Project-Specific Fire Engineering Design Objectives shall cover the following spectrum of issues …

  • Protection of the Health and Safety of All Building Users … including people with activity limitations (2001 WHO ICF), visitors to the building who will be unfamiliar with its layout, and contractors or product/service suppliers temporarily engaged in work or business transactions on site ;
  • Protection of Property from Loss or Damage … including the building, its contents, and adjoining or adjacent properties ;
  • Safety of Firefighters, Rescue Teams and Other Emergency Response Personnel ;
  • Ease and Reasonable Cost of ‘Effective’ Reconstruction, Refurbishment or Repair Works after a Fire ;
  • Sustainability of the Human Environment – including the fitness for intended use and life cycle costing of fire engineering related products, systems, etc … fixed, installed or otherwise incorporated in the building ;
  • Protection of the Natural Environment from Harm, i.e. adverse impacts.

.

More Specifically … with Regard to Resilient Building Performance during a Fire Incident and the ‘Cooling Phase’ after Fire Extinguishment:

1.   The Building shall be designed to comply with the Recommendations in the 2005 & 2008 NIST(USA) Final Reports on the World Trade Center(WTC) 1, 2 & 7 Building Collapses.

In one major respect, the 2005 NIST Report is flawed, i.e. its treatment of ‘disability and building users with activity limitations is entirely inadequate.  The Building shall, therefore, be designed to comply with International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’, which was published in December 2011.

2.   The Building shall remain Serviceable, not just Structurally Stable(!) … until all buildings users (including those users with activity limitations waiting in ‘areas of rescue assistance’) have been evacuated/rescued to an accessible ‘place of safety’ which is remote from the building, and have been identified … and all firefighters, rescue teams and other emergency response personnel have been removed/rescued from the building and its vicinity.

The Building shall be designed to resist Fire-Induced Progressive Damage and Disproportionate Damage.  These requirements shall apply to all building types, of any height.

Under no reasonably foreseeable circumstances shall the Building be permitted to collapse !

3.   The Building shall be designed to comfortably accommodate and resist a Maximum Credible Fire Scenario and a Maximum Credible User Scenario.

.

Concerted International Research is Needed …

To creatively resolve the direct conflict which exists between Sustainable Building Design Strategies and Traditional/Conventional Fire Engineering.

An example … for cooling, heating and/or ventilation purposes in a sustainable building, it is necessary to take advantage of natural patterns of uninterrupted air movement in that building. On the other hand, fire consultants in private practice, and fire prevention officers in authorities having jurisdiction, will demand that building spaces be strictly compartmented in order to limit the spread of fire and smoke … thereby dramatically interfering with those natural patterns of air movement. The result is that the sustainability performance of the building is seriously compromised.

If, however, adequate independent technical control is absent on the site of a sustainable building … it is the fire safety and protection which will be seriously compromised !

To effectively deal with the fire safety problems (fatal, in the case of firefighters) which result from the installation of Innovative Building/Energy/EICT Systems and Products in Sustainable Buildings.

.

These are appropriate tasks for a new CIB W14 Research Working Group VI: ‘Sustainable Fire Engineering Design & Construction’ !

.

.

ENDEnhanced by Zemanta

SDI Practice Announcement – New 32 Storey Hotel in China

2013-04-02:  Sustainable Design International Ltd. (SDI) is pleased to announce that its Managing Director, C.J. Walsh, has been invited to be ‘Project Design Architect’ / ‘Design Professional in Responsible Charge’ for a New 32 Storey Hotel in Yunnan Province, People’s Republic of China (PRC).

He will have responsibility for the Project’s Architectural Concept Design and General Schematic Design … including the overall architectural character and profile of primary exterior surfaces.

Project Approximate Value = € 65 Million (Euros) … excluding interior design, finishes and furnishing (which could end up doubling, or even tripling, the overall project value).

Sustainable Design International Ltd.  maintains a strict practice policy of Client Confidentiality.

[ If this Type of Professional Design Service Appeals to You, or Your Organization – Contact Us Immediately ! ]

.

.

2012 ‘Understanding China’ Policy Briefing Friends of Europe & EuroChambres

An estimated One Billion People will be living in China’s cities by 2030.  This large-scale and very rapid urbanization demands that a sustainable transformation of their urban built, social, economic and institutional environments commences Today – not at some notional point in a far distant future.

Furthermore … replicating a European approach to sustainable design and construction in other regions of the world is doomed to failure.  Urban Transformation in China must be adapted to Local Geography, Climate, Climate Change, Social Needs, Cultures, Economy, and Local Severe Events (e.g. earthquakes, flooding).  With European support and collaboration … China must, and will, find its own way.

Greening China's Cities of Tomorrow (2012) - Report CoverGreening China’s Cities of Tomorrow (Spring 2012)

Click the Link Above to read and/or download a PDF File (4.42 Mb)

Report on a One-Day China Advisory Council Roundtable, co-organized by Friends of Europe and EuroChambres, which was held in Brussels on 8 March 2012.  This event was part of an ‘Understanding China’ Programme (mid-2009 to mid-2012), co-funded by the European Commission.

.

.

2013 Asian Development Bank (ADB) Guidebook: ‘Increasing Climate Change Resilience of Urban Water Infrastructure’ 

This Guide describes a practical approach to bridge the gap between theoretical analyses of climate change impacts and the planning decisions that need to be made by city authorities and utility managers to increase climate change resilience of the water sector in the city of  Wuhan, Hubei Province, People’s Republic of China (PRC).  It focuses on answering the questions currently being asked by city planners and managers all over the world, as follows:

  • What changes might be caused by climate change ?
  • How will these changes affect services and utilities ?
  • What can we do now to prepare for them ?

The long lead time required to plan, finance, build, and commission city infrastructure facilities means that decision makers cannot wait for more detailed data on the effects of future climate change, especially those relating to local circumstances, but must make investment decisions based on what is known now and what can be readily predicted.  An important principle in this kind of ‘robust’ decision-making is provided by the  Intergovernmental Panel on Climate Change (IPCC)  tenet that adaptation investments, which move a city’s infrastructure toward sustainable development (such as providing safe drinking water and better sanitary conditions), are justifiable even without climate change.

This Guide is arranged in clear steps to provide direction and information for similar exercises in other areas.  Having grown out of a specific locality and its needs, the principles and solutions developed in this guide are founded on real world situations and problems …

ADB Guidebook: 'Increasing Climate Change Resilience of Urban Water Infrastructure' (2013) - Cover PageIncreasing Climate Change Resilience of Urban Water Infrastructure (ADB, 2013)

Click the Link Above to read and/or download a PDF File (2.31 Mb)

.

.

***  THIS TALL BUILDING IN YUNNAN PROVINCE  &  SIMILAR COMPLEX ARCHITECTURAL PROJECTS  ***

Working within the professional constraints of ‘client confidentiality’ … it is possible to have a general discussion about current building design, construction and operation issues in an international sector which is operating, more and more, beyond national borders … without adequate, or very often any, national and local regulation.  By ‘regulation’, I mean a flexible system of building-related legislation which is operated in conjunction with mandatory and effective technical control.

In order to cope with today’s complex built environment and the enormous variation in the size and scale of construction projects … a ‘flexible’ mix of functional, performance and prescriptive legal requirements is the sharpest and most appropriate instrument.

And you can forget the hype about performance-based building codes coming out of the USA … hot air, and much ado about little !

Of course, the biggest issue of all is the competence of those individuals who work in Authorities Having Jurisdiction (AHJ’s), i.e. technical controllers.  Even in the most developed economies of the world … there are many occasions when the level of individual incompetence in an AHJ is astounding … and institutional arrangements within the AHJ itself are a mess, i.e. the AHJ is not fit for purpose.

.

1.  Sustainable Design – Design Process Efficiency & Proper Preparation for Construction

A tremendous amount of waste is associated with and generated by the processes of conventional building design, construction and operation.  There is a more up-to-date and efficient way of doing things … an essential way for Sustainable Design … and it’s called Building Information Modelling (BIM) !

Furthermore … consider, for a moment, just the initial list of Specialist Consultants who will be engaged directly by the Chinese Client when the project’s conceptual design has reached a sufficiently developed stage.  How can all of these individuals and organizations – listed in the revised and agreed Project Design Agreement – obtain accurate and reliable ‘real time’ information about the rapidly evolving project from a central design library / information database … then feed their new work back into the centre without unnecessary delay ?   How, next, can everyone else who needs to know, be updated with the new design input … again, without delay ?   And perhaps, these consultants may also be based in different countries … working in very different time zones …

  • Building Information Modelling (BIM) Consultant
  • Local Design Institute (LDI) … a local architectural practice which will produce the project’s working drawings, handle local spatial planning and building code approvals, carry out site inspections, and deal directly with construction organization(s), etc., etc.
  • Interior Design Consultant
  • Traffic / Parking Analysis Consultant
  • Curtain Wall Consultant (Curtain Wall, Skylights & Special Roof Structures)
  • Retail Market Analysis Consultant
  • Landscape Design Consultant
  • Quantity Surveying & Cost Estimating Consultant
  • Furniture Design Consultant
  • Geotechnical, Civil Engineering & Structural Engineering Consultant (including structural performance under fire and earthquake conditions, resistance to fire-induced progressive damage and disproportionate damage … and also including climate resilience)
  • Acoustic & Audio-Visual Design Consultant
  • Mechanical, Electrical & Plumbing (MEP) Engineering Consultant
  • Integrated Building Automation & Management / Telecom / Security / Networking Consultant
  • Fire & Life-Safety Engineering Consultant
  • Water Feature Consultant
  • Wind Tunnel Test Consultant
  • Kitchen Equipment and Layout Design Consultant
  • Art, Artefact and Accessories Consultant & Procurement Services for Art, Artefacts, and Accessories
  • Tenant Storefront Design Consultant
  • Helicopter Landing Pad Design Consultant
  • Universal Design / Accessibility for All Consultant [including access to the building, electronic, information and communication technologies (EICT’s), and services offered at the hotel … and including fire safety, protection and evacuation for all]

.

2.  The ‘Design Professional in Responsible Charge’ !

The Project Design Agreement requests that the Client receive advice on who might be the different Specialist Consultants listed above.  In addition, it will be necessary to demarcate the boundaries within which each Consultant will operate … and, where appropriate, to prescribe a design performance target (see below) for each speciality … which must be ‘realized’ in the completed and occupied building !

Recalling the many previous posts, here on this Technical Blog, concerning NIST’s 2005 & 2008 Recommendations on the 9-11 World Trade Centre Building Collapses in New York City‘somebody’ must ensure that the many individuals and organizations listed above – members of the Larger (2nd Stage) Design Team – use consistent design data and assumptions … must co-ordinate design documents and specifications to identify overlaps and eliminate gaps … must serve as ultimate liaison between the Client, the Local Design Institute, AHJ officials, and the Construction Organization(s) … and must ensure that everybody is on the same communication wavelength, and working towards the same objective in a trans-disciplinary manner.

That ‘Somebody’ … the Design Professional in Responsible Charge … must be the Project Design Architect !

.

3.  Some Sustainable Design Performance Targets

Actual construction and building user performance shall be carefully (i.e. reliably and precisely) monitored … and independently verified …

A.   Basic Functional Requirements … the Building shall comply with the Basic Requirements for Construction Works – elaborated in Annex I of European Union (EU) Regulation No.305/2011 of the European Parliament and of the Council, of 9 March 2011, laying down Harmonized Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC.

See my Post, dated 2011-09-13 … https://www.cjwalsh.ie/2011/09/new-eu-construction-product-regulation-3052011-halleluiah/

.

B.   Good Indoor Air Quality (IAQ) … Two high-level performance indicators have been developed with the aim of protecting Human Health, and are both now referenced in International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’

      –   Radon Activity (incl. Rn-222, Rn-220, RnD) in a building should, on average, fall within the range of 10 Bq/m3 to 40 Bq/m3, but shall at no time exceed 60 Bq/m3 ;

      –   Carbon Dioxide (CO2) Concentrations in a building should not significantly exceed average external levels – typically within the range of 300 parts per million (ppm) to 500 ppm – and shall at no time exceed 800 ppm.

.

C.   Energy Conservation & Efficiency + A ‘Positive Energy’ Return + Assured Building User Thermal Comfort

See my Post, dated 2013-09-10 … https://www.cjwalsh.ie/2013/09/passivhaus-standard-is-not-enough-in-new-building-projects/

.

D.   Project-Specific Sustainable Fire Engineering Design Objectives

See my Post, dated 2014-04-20 … https://www.cjwalsh.ie/2014/04/sustainable-fire-engineering-design-targeting-mrv/

.

E.

.

.

.

.

ENDEnhanced by Zemanta

‘Sustainable Fire Engineering for All’ – SDI’s Professional Service

2012-12-14 & 2012-12-30:  Further to this distressing incident … which exposed a profound lack of awareness, care and competence within the general fire safety industrial sector …

Recent Fatal Fire at a Disabled Workshop in SW Germany

… this is how we would like to help you … whether you are an individual, or an organization … whether you are located in Ireland, Italy or Turkey … some other part of Europe, the Arab Gulf Region, India, Japan, China … or wherever !

And … we can, if requested or necessary, work in collaboration with local partners in those different geographical regions.

– FireOx International is the Fire Engineering Division of Sustainable Design International Ltd. (SDI) –

.

Colour photograph showing the 2 World Trade Center Towers, in New York City, immediately after the second plane impact. The mechanical damage arising from such a plane impact had been considered in the Initial Building Design Process; incredibly, any type of Fire Incident had not ! In the case of both towers and within a short period of time, Fire-Induced Progressive Damage resulted in Disproportionate Damage, and eventual Total Building Collapse. The horror and carnage at the World Trade Center Complex, and the extensive collateral damage to everywhere south of Canal Street, caused enormous long-term damage to the economy of Manhattan ... and had a very significant adverse impact on Global Financial Markets. Click to enlarge.
Colour photograph showing the 2 World Trade Center Towers, in New York City, immediately after the second plane impact. The mechanical damage arising from such a plane impact had been considered in the Initial Building Design Process; incredibly, any type of Fire Incident had not ! In the case of both towers and within a short period of time, Fire-Induced Progressive Damage resulted in Disproportionate Damage, and eventual Total Building Collapse. The horror and carnage at the World Trade Center Complex also caused enormous long-term damage to the economy of Manhattan … and had a very significant adverse impact on Global Financial Markets. Click to enlarge.

.

Introduction

Fundamentally, the 9-11 World Trade Center Incident in New York (2001) was an Extreme ‘Real’ Fire Event.  It presented the International Fire Engineering Community with a catastrophic failure in conventional practices and procedures related to:

  • Fire Engineering, Structural Engineering, and Architectural Design ;
  • Human Building Management Systems ;
  • Emergency Response by Firefighters, Rescue Teams, and Medical Personnel ;
  • National and Local Organizations Having Authority or Jurisdiction (AHJ’s) ;

… and with the serious problem of entirely inadequate Fire Safety Objectives in the building legislation, model codes and design standards of the most economically advanced countries in the world.

Those people who understand the building design process, and have experience as construction practitioners, have long realised that the lessons from 9-11 must be applied across the full spectrum of building types … not just to tall buildings.  Right up to the present day, unfortunately, many people in the International Fire Engineering Community are either unwilling, or unable, to do this.

Furthermore … Fire Engineering, Architectural Design and Structural Engineering must, of urgent necessity, be seamlessly conjoined … with the aim of removing misunderstandings and the wide gaps in client service delivery between the different disciplines.

In 2002, a series of Long-Term 9-11 Survivor Health Studies commenced in the USA … and in 2005 and 2008, the U.S. National Institute of Standards and Technology (NIST) issued a series of Post 9-11 Critical Recommendations concerning the design, construction, management and operation of buildings.

At FireOx International … we have fully integrated this essential design guidance into our frontline fire engineering and architectural practice … we have developed unique and practical solutions for worldwide application, some of which appear in International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’, published in December 2011.

.

Colour photograph showing an armed assailant during the November 2008 'Hive-Attack' on Mumbai ... an extraordinarily violent, co-ordinated assault on the largest (and wealthiest) city in India, which involved the strategic targeting of built environment Places of Public Resort, Iconic Buildings, High-Rise Buildings, Buildings having a Critical Function, Transport Infrastructure and Service Utilities ... with the aim of causing widespread terror among the general population, including tourists, and disruption to the city’s important economic environment. Click to enlarge.
Colour photograph showing an armed assailant during the November 2008 ‘Hive-Attack’ on Mumbai … an extraordinarily violent, co-ordinated assault on the largest (and wealthiest) city in India, which involved the strategic targeting of built environment Places of Public Resort, Iconic Buildings, High-Rise Buildings, Buildings having a Critical Function, Transport Infrastructure and Service Utilities … with the aim of causing widespread terror among the general population, including tourists, and disruption to the city’s important economic environment. Click to enlarge.

.

FireOx International’s Commitment to You

As a necessary response to the New 21st Century Paradigm of Real Extreme Event in a Built Environment which is becoming more and more complex … is subject to climate change and severe weather events … and is vulnerable to malign and malevolent disruption –

WE are committed to … the implementation of a Sustainable Human Environment which is Fire Safe and Secure for All, meaning that an ‘appropriate project-specific fire safety level’ is our fire engineering objective, with ‘human health protection’ targeted as a priority … through the use of innovative, reliability-based and person-centred sustainable design practices and procedures.

.

What is an ‘Appropriate Fire Safety Level’ in Your Building or Facility ?

It is rarely, if ever, explained to clients/client organizations that the Minimal Fire Safety Objectives in building legislation are focused solely on protecting the ‘interests’ of society, not those of the individual …  are, quite often, inadequate and/or flawed … and are, always, revised only after the latest tragedy !

To properly protect Your Interests as a client/client organization … we strongly advise that the Appropriate Level of Fire Safety in Your Building or Facility should exceed the minimal level of safety required by building legislation.  We would also caution that, in many jurisdictions (e.g. India), compliance with national building legislation is voluntary.

Which raises the issues of whether or not you will actually get what you pay for, and whether or not the Fire Protection Measures in Your Building or Facility are reliable (in other words, will they perform as intended at the time of a ‘real’ fire, which may occur at any time in a building’s long life cycle) !?!   Competent Technical Control of Design and Construction, independent of the design and construction organization(s), is essential.

You should carefully consider the following spectrum of issues which may be directly relevant to Your Project.  Following a process of consultation with you, we then develop Project-Specific Fire Engineering Design Objectives … bearing in mind that you must also comply with safety at work, anti-discrimination, and environmental legislation, etc … maintain business continuity, etc … be energy efficient, etc … and be socially responsible, etc …

–     Protection of the Health of All Building Users … including People with Activity Limitations (2001 WHO ICF), Visitors to the building or facility who may be unfamiliar with its layout, and Contractors or Product/Service Suppliers temporarily engaged in work or business transactions on site ;

–     Protection of Property from Loss or Damage … including the Building or Facility, its Contents, and Adjoining or Adjacent Properties ;

–     Safety of Firefighters, Rescue Teams and Other Emergency Response Personnel ;

–     Ease and Reasonable Cost of ‘Effective’ Reconstruction, Refurbishment or Repair Works after a Fire ;

–     Sustainability of the Human Environment (social – built – virtual – economic) … including Fitness for Intended Use and Life Cycle Costing of fire engineering related products and systems, etc … fixed, installed or otherwise incorporated in the building or facility ;

–     Protection of the Natural Environment from Harm, i.e. Adverse or Damaging Impacts.

.

FireOx International – Our Fire Engineering Services

  • WE  will advise you on Fire Safety Policy, Fire Safety Strategy Development, Fire Safety Implementation … and, whether you are within or from outside the European Union, on CE Marking of Fire Protection Related Construction Products

  • WE  understand the process of Design, particularly the new language of Sustainable Design … and we will produce Creative Fire Engineering Solutions for Your Project

  • WE  are thoroughly familiar with the intricacies of Building Sites … and we will verify and/or validate Design Compliance during construction, and at project completion … and, if requested or necessary, as a completely Independent Technical Controller ; 

  • WE  communicate easily and effectively with other Professional Design Disciplines, including architects and structural engineers … and we will act as fully participating members of Your Project Design & Construction Team … and, if requested or necessary, as the Design Professional in Responsible Charge **

  • WE  practice in accordance with a comprehensive Professional Code of Ethics

.

Sustainable Fire Engineering Solutions ?

  1. Are adapted to Local Geography, Climate/Climate Change, Social Need, Culture, Economy … and Severe Events (e.g. earthquakes, flooding) ;
  2. Are ‘Reliability-Based’, i.e. that design process based on practical experience, competence and an examination of real extreme events, e.g. 2001 WTC 9-11 & 2008 Mumbai Attacks, and 2011 Fukushima Nuclear Incident … rather than theory alone ;
  3. Are ‘Person-Centred’, i.e. that design process which places ‘real’ people at the centre of creative endeavours and gives due consideration to their responsible needs, and their health, safety, welfare and security in the Human Environment.

.

FireOx International’s Contact Information

E-Mail:  cjwalsh@sustainable-design.ie

International Phone:  +353 1 8386078   /   National Phone:  (01) 8386078

.

.

Important Note:  This Post should be read in conjunction with an earlier Post …

Sustainable Design International Ltd. – Our Practice Philosophy

It is there, not here, that we define Sustainable Human & Social Development … and describe how our Practice is responding to this open, intricate, dynamic, and still evolving concept.  The resulting transformation in how frontline services are provided to our Clients/Client Organizations ensures a much more comfortable ‘fit’ to their needs … and a greater level of protection, safety and security for society !

.

[ ** 2005 NIST(USA) Final Report on 9-11 World Trade Center 1 & 2 Tower Collapses

– Footnote 49 –

… the Design Professional in Responsible Chargeusually the lead architect – ensures that the (Design) Team Members use consistent design data and assumptions, co-ordinates overlapping specifications, and serves as the liaison with enforcement and review officials, and with the client or client organization. ]

.

.

END

Enhanced by Zemanta